Nordplus collaboration work group at kick-off in OCC Incubator

Accelerating learning in Nordic life science milieus

A new collaborative project will make life science learning more accessible in the Nordics and give a boost to innovation and medical development.

The Nordic life science industry is booming and medical developments have never been this rapid. Nonetheless, in small countries like the Nordics, educational resources may not always be easy for the life science community to access. Now, five Nordic life science organisations from Sweden, Finland and Norway have joined forces to improve learning across borders.

“Each of us are small countries, through this collaboration we can provide more high-quality learning opportunities for Life Science professionals and for a broader Nordic-Baltic target group, instead of reinventing the wheel,” says Hanna Rickberg, Head of Education at the Swedish Academy of Pharmaceutical Sciences.

As part of the Nordplus Horizontal programme, educational events, training workshops and practical courses directed towards the life science industry will be made available online. The life science professionals can participate via a live video stream or pre-recorded material, making learning accessible to those on-site or on remote locations and in other countries.

The five partners in the project are:

“Life science is a global business and cross-border collaboration is important, in particular for small countries in the Nordics,” says Bjørn Klem, General Manager at Oslo Cancer Cluster Incubator.

The project has received support from Nordplus to facilitate the sharing of educational resources across national borders in the Nordics. This will act as an innovation boost to Nordic life science environments.

“We are intrigued by the opportunity to explore how we can establish synergies across the Nordic markets when it comes to meeting educational needs within the Life Science sector. The underlying assumption is that the needs are similar. Networking for future collaboration may present as a secondary benefit,” says Dag Larsson, Senior Policy Manager, LIF – the Research Based Pharma Industry in Sweden.

Nordic cooperation will be paramount to make the most of medical advances and to make personalized medicine a reality.

“We see Nordic cooperation as an essential value to the medical development that is now taking place with both personalised medicine and building a life science industry across the Nordic countries,” says Marie Svendsen Aase, Communications Adviser, Legemiddelindustrien (LMI).

The project will run until 30 April 2021 and the five partners will share their courses via their websites and social media channels.

“Nordplus collaboration provides us with an excellent opportunity to expand our training services to the Nordic market and to share knowledge with the other partners,“ says Anja Isoaho, Training Manager at Pharmaceutical Information Centre (Finland).

 

Next upcoming activity in the Nordplus course plan 2020-2021:

The 4th Nordic RWE Conference 2020, 11 February 2020, 09:00-17:00, arranged by LMI in Kaare Norum Auditorium, Oslo Cancer Cluster Innovation Park, Ullernchausseen 64, 0379 Oslo. This event will be streamed.

 

Nordic Life Science Learning logo

 

Partner logos:

Lääketietokeskus logo

LIF logo

 

Läkemedelsakademin logo

 

LMI logo

 

OCC Incubator logo

Innovation Park and the surrounding buildings

Oslo Cancer Cluster Innovation Park: A powerhouse for the development of cancer treatments

This article was originally published in Norwegian on Altomdinhelse.no by Mediaplanet, and was written by Jónas Einarsson, CEO of Radforsk and initiator of Oslo Cancer Cluster, Oslo Cancer Cluster Incubator and Oslo Cancer Cluster Innovation Park. 

We wish to expand Oslo Cancer Cluster Innovation Park with close to 50 000 square metres the next five to seven years. The goal is to develop even better cancer treatments to improve the lives of cancer patients, in close collaboration with the ecosystem around the park.

On 24 August 2015, the Norwegian Prime Minister Erna Solberg opened Oslo Cancer Cluster Innovation Park. In her speech, she said: “Oslo Cancer Cluster Innovation Park will fulfil an important role in the development of the cancer treatments of the future.”

That moment was the starting point for a unique collaboration between cancer researchers, clinicians, teachers, students, business developers and numerous other professions that are needed to develop tomorrow’s cancer treatments.

All of us that work here share a common vision: Oslo Cancer Cluster Innovation Park and the environment around the Norwegian Radium Hospital and the Institute for Cancer Research (Oslo University Hospital) should be an international powerhouse for the development of cancer treatments.

The beginning of a success story

Five years after the opening, we are still fulfilling that vision every day. I would even go so far as to say that we have contributed to a success story:

  • Oslo Cancer Cluster Incubator houses nine start-up companies today, and we are working closely with seven other companies that are located other places due to limited space.
  • The 24 private and public tenants of Oslo Cancer Cluster Innovation Park want more space, since their operations are ever growing.
  • Ullern Upper Secondary School is one of the most sought-after schools in Oslo and the number of students is ever increasing. The students are offered the opportunity to participate in the school collaboration with Oslo Cancer Cluster, to educate the researchers and entrepreneurs of tomorrow. In the autumn of 2019, the researcher programme was initiated at Ullern, which is a unique opportunity for students in Oslo to specialise in biomedical subjects.

Many developments planned

Everything mentioned above is only what is happening inside the Innovation Park. In the nearby area, there are many unique developments that will change the treatment of cancer patients in coming years:

  • In 2023, the new clinic building of the Norwegian Radium Hospital and its specialised proton centre will open.
  • The Institute for Cancer Research is being developed further under the proficient management of Professor Kjetil Taskén. The talented researchers at the Institute are delivering internationally renowned research every day.
  • Oslo University Hospital is the only hospital in Scandinavia accredited as a “Comprehensive Cancer Center”. The accreditation demands constant development of research, infrastructure and treatments.

Still a way to go

Things are still far from perfect. Almost everyday in the news, there are discussions about whether Norwegian cancer patients are offered the best cancer treatments. I believe we still have a way to go. In order to give better cancer treatments, we must heavily invest in the development of:

  • Molecular diagnostics
  • Cell and gene therapy
  • Precision medicine
  • The treatment of antibiotic resistance

Because of the success we have had so far with the Oslo Cancer Cluster Innovation Park and the need to strengthen cancer care further, we wish to expand the Oslo Cancer Cluster Innovation Park during the next five to seven years with close to 50 000 square metres. The first expansion will total 7 000 square metres. The planning scheme begins this year and the building itself will be located between the Innovation Park and the Institute for Cancer Research.

Enormous ambitions

The expansion of the Innovation Park is an important supplement to the plans on developing Oslo into Oslo Science City. We are also a living example of how public-private partnerships is the way to go in order to build a sustainable health industry, like the White Paper on the Health Industry has stated.

Norwegian cancer research is world class. The 15 companies in the Radforsk portfolio has spun out of this research. We have enormous ambitions to contribute even more to the development of the cancer treatments of tomorrow – to improve the lives of cancer patients all over the world.

As Prime Minister Erna Solberg said in her speech on 24 August 2015: “Smart minds and new ideas, students and professors, Norwegians and foreigners, founders and employees. Together for a common goal: to improve the treatment of the approximately 30 000 Norwegians that are diagnosed with cancer every year.”

That statement is still true today.

 


Oslo Cancer Cluster Innovasjonspark:
Kraftsenter for utvikling av kreftbehandling

Vi ønsker å utvide Oslo Cancer Cluster Innovasjonspark med nærmere 50.000 km² de neste fem til syv årene. Målet er å utvikle enda bedre kreftbehandling til det beste for kreftpasienter, i tett samarbeid med økosystemet rundt parken.

Av Jónas Einarsson, administrerende direktør i Radforsk og initiativtaker til Oslo Cancer Cluster, Oslo Cancer Cluster Inkubator og Oslo Cancer Cluster Innovasjonspark.

Den 24. august 2015 åpnet Statsminister Erna Solberg Oslo Cancer Cluster Innovasjonspark. I sin tale sa hun: «Oslo Cancer Cluster Innovasjonspark vil fylle en viktig rolle i utforming av fremtidens kreftbehandling.»

Og med det gikk startskuddet gikk for et unikt samarbeid mellom kreftforskere, klinikere, lærere, elever, forretningsutviklere og en rekke andre profesjoner som trengs for å utvikle morgendagens kreftbehandling.

Felles for alle oss som jobber her, er at vi har én visjon: Oslo Cancer Cluster Innovasjonspark og miljøet rundt med Radiumhospitalet og Institutt for Kreftforskning, skal være et internasjonalt kraftsenter for utvikling av kreftbehandling.

Fem år etter åpningen så lever vi ut denne visjonen hver dag. Jeg vil tørre å påstå at det vi har bidratt til er en suksess:

  • Oslo Cancer Cluster Incubator huser i dag ni oppstartsbedrifter, og vi jobber tett med syv andre som sitter andre steder og som det ikke er plass til
  • Oslo Cancer Cluster Innovasjonspark sine 24 private og offentlige leietakere ønsker mer plass da de stadig utvider sin virksomhet
  • Ullern videregående skole er en av de best søkte skolene i Oslo, og øker stadig elevtallet. Elevene på skolen får tilbud om å delta i det skolefaglige samarbeidet med Oslo Cancer Cluster, for å utdanne morgendagens forskere og entreprenører. Høsten 2019 startet Forskerlinja, et unikt tilbud til skoleelever i Oslo om fordypning i biomedisinske fag

Dette er bare inne i Innovasjonsparken. I området rundt oss skjer det unike ting som endrer måten pasienter med kreft blir behandlet på om få år:

  • I 2023 åpner det nye klinikkbygget på Radiumhospitalet med et spesialisert protonsenter
  • Institutt for Kreftforskning blir stadig videreutviklet under kyndig ledelse av professor Kjetil Taskén. De dyktige forskerne ved instituttet leverer daglig internasjonalt, anerkjent forskning
  • Oslo universitetssykehus er som eneste sykehus i Skandinavia akkreditert som et «Komplett kreftsenter», «Comprehensive Cancer Center». Akkrediteringen krever konstant utvikling av forskning, infrastruktur og behandling

Likevel er ikke tingenes tilstand rosenrød. I media kan vi nesten daglig lese diskusjoner om hvorvidt kreftbehandlingen pasienter i Norge tilbys er den beste. Min påstand er at vi har mye å gå på. For å gi bedre kreftbehandling må vi satse tungt på å utvikle:

  • Molekylær diagnostikk
  • Celle- og genterapi
  • Presisjonsmedisin
  • Behandling av antibiotikaresistens

På bakgrunn av den suksessen vi har hatt med Oslo Cancer Cluster Innovasjonspark så langt, og behovet for å styrke kreftomsorgen ytterligere, ønsker vi de neste fem til syv årene å utvide Oslo Innovasjonsparken med nær 50.000 km². Den første utvidelsen vil være på 7000 km². Prosjekteringen starter i år, og selve bygget vil ligge mellom Innovasjonsparken og Institutt for Kreftforskning.

Utvidelsen av Innovasjonsparken er et viktig tilskudd til planene om å utvikle Oslo som en kunnskapshovedstad, Oslo Science City. Vi er i tillegg et levende eksempel på at privat-offentlig samarbeid er veien å gå for å bygge en bærekraftig helsenæring, slik Stortingsmeldingen om helsenæring slår fast.

Norsk kreftforskning er i verdensklasse. Våre 15 bedrifter i Radforsk-porteføljen er spunnet ut av denne forskningen. Vi har enorme ambisjoner om at vi kan bidra enda mer til utviklingen av morgendagens kreftbehandling – til det beste for kreftpasienter over hele verden.

Som Statsminister Erna Solberg sa i sin tale den 24. august 2015: «Kloke hoder og nye ideer, studenter og professorer, nordmenn og utlendinger, gründere og ansatte. Samlet med ett felles mål: å bedre behandlingen til de om lag 30.000 nordmenn som blir diagnostisert med kreft hvert år.»

Det er like sant i dag.

Moina Medbøe Tamuly (to the left) and his colleage Sondre Tagestad from NTENTION test the drone glove on Devon Island.

From Ullern to Mars

Read this article in Norwegian on our School Collaboration website.

A former Ullern student with an unusual career came to inspire current students in December.

Moina Medbøe Tamuly was in his final year at Ullern Upper Secondary School in 2014. Before Christmas in 2019, he came back to Ullern to tell today’s students about his exciting life after graduation.

Since Moina Medbøe Tamuly exited the school gates of Ullern Upper Secondary School for the very last time in June 2014, he has managed to spend two years in military service, worked in Trondheim, Oslo, Beijing, Shanghai, Amsterdam, Las Vegas, Brazil and the Arctic.

Moreover, he has an adventurous personality, combined with a passion for technology, which made him start the company NTENTION with his friend Magnus Arveng.

Magnus had the idea of a glove that could control drones, which he and Moina, together with their skilled team, has brought to life. The ground-breaking gloves can simplify the steering of everything from drones to VR interaction, music and robot arms. Their vision has been to develop a technology that is a natural and seamless extension of the human, instead of being an external instrument.

This has aroused the interest of the founder of the Mars Institute, Dr. Pascal Lee, who is collaborating with NASA on missions to the Moon and the exploration of Mars. The adventurous journey brought Moina all the way to Devon Island, a Mars-like, uninhabited island in the Arctic, together with his colleague Sondre Tagestad in NTENTION. During their stay, they tested if the glove could be used as an interactive instrument in conceptual space suits.

NTENTION’s collaboration partners at the Mars Institute/SETI Institute say in the article above that the glove “is revolutionary for future human exploration of the moon and Mars – and potential other planets”.

Right before Christmas 2019, Moina went back to his old upper secondary school, Ullern, to tell the students there today what life after graduation can be like.

Not a straightforward task

Moina tells the students the journey to Devon Island and the collaboration with astronauts has not been simple and straightforward, but has included many ups, downs and detours.

The students have brought their lunches into Kaare Norum auditorium to hear what the former Ullern student has to say about life after graduation.

Moina Medbøe Tamuly is back on his old hunting grounds, telling Ullern students about life after graduation.

Moina Medbøe Tamuly is back on his old hunting grounds, telling Ullern students about life after graduation. Photo: Elisabeth Kirkeng Andersen

At Ullern, Moina studied physics, history, philosophy and chemistry.

“I wasn’t very good at physics. I thought it was a really demanding subject, but also very exciting,” Moina says.

“After I graduated, I was really sick and tired of school. Then I had to do military service, something I wasn’t exactly thrilled about in the beginning. I was immature and created some disorder, but eventually I started liking it so much that I stayed there for two years. I was even accepted to The Royal Norwegian Naval Academy, which would have been an adventurous opportunity that I still daydream about sometimes.”

After the military service, Moina studied Industrial Economy and Technology Leadership at NTNU. In the passionate and teeming student atmosphere at NTNU, Moina met his business partner and friend Magnus Arveng and their company NTENTION was born.

Moina says that when he was a student at Ullern, he liked the subjects, the other students, the teachers and working for the student council. The first period at NTNU was a shock after such an enjoyable period of upper secondary school and military service.

“When I moved to Trondheim to study at NTNU, everything became chaotic. I had a breakdown and became depressed. It was a big transition from the military service, where I had great co-workers and a lot of responsibility, to academic studies. Our company saved me. It was pure magic to come back to an environment where you cooperate closely with one another to reach results together – and to be able to see the results of what you do every day,” Moina says.

Moina believes this is a reality many students can recognise and that it is important to learn that things don’t always go the way you planned, no matter how hard you work.

The company the students started together now has 13 employees in different roles and functions.

Doctor Pascal Lee, Head of the Research Station on Devon Island and space researcher at the Mars Institute is trying out the glove from NTENTION. Photo: Haughton-Mars Project

Dr. Pascal Lee, Head of the Research Station on Devon Island and space researcher at the Mars Institute, is trying out the glove from NTENTION. Photo: Haughton-Mars Project

The journey is as important as the goal

“I am not here to talk about what I have achieved, but about my life and the journey to get here,” Moina says to the Ullern students.

After showing the drone glove to interested students by using presentation slides and a video, Moina asks if there are any questions from the audience. Many hands go up in the air and they wonder how on Earth NTENTION got in touch with researchers that collaborate with NASA.

“It was very random. We met Dr. Pascal Lee at a conference arranged by Energy Valley. We knew the organisers and they gave us a stand for free. The glove we had developed can be used for music and art too. DJs can use it to play their set and combine it with video. So, together with the artist duo Broslo, we had arranged a unique stand with exciting artwork and video clips. That is where we started talking with Lee.”

A friendship developed between Lee, Moina and the others in NTENTION. Moina wants to highlight that you often meet friendly professionals if you dare to get in touch with them, one of the most important lessons from his journey so far.

“Our solution was a good fit with his visions and the need to explore Mars, so we began to work together,” Moina says.

The Ullern students’ lunch break is almost over, so Moina begins to sum up.

Devon Island is where NTENTION and Moina have tested the drone glove for the Mars Institute. Photo: Moina Medbøe Tamuly.

Devon Island is where NTENTION and Moina have tested the drone glove for the Mars Institute. Photo: Moina Medbøe Tamuly.

Time will be the judge of whether the drone glove Moina has developed one day will be a part of the space suits and equipment astronauts will use when landing on the Moon and Mars.

“The world will be more complicated and difficult when you graduate from Ullern, but all the more exciting. The last years of my life have been a little chaotic. It has been about closing deals and travelling around the world to find opportunities without a regular schedule. I finally learned that all people need to have a little bit of structure and to be part of a whole to thrive. In the end, I have unique experiences. My intellect has been nourished, I feel truly inspired and I am humbled to be a part of the journey where we are working to spearhead technological developments,” says Moina.

Sign up to our monthly newsletter

News from our members

There have been several exciting developments from our members over the last week. Here are three condensed news from the Norwegian biopharma sphere that we wish to highlight.

Promising combination treatment

Our member Targovax, a Norwegian immuno-oncology company, has announced some encouraging data from one of their clinical studies.

The study is directed towards patients with mesothelioma, a type of cancer that develops in the thin layer of tissue that covers many of the internal organs, for example the lining of the lungs or chest wall.

The patients are given a combination treatment consisting of Targovax’s own oncolytic virus called “ONCOS-102” and the standard of care: chemotherapy.

The preliminary data show a numerical advantage in progression-free survival for the patients that have received ONCOS-102. There has also been a robust immune activation in the experimental group. It has also been shown that the combination treatment is well tolerated by the patients.

Targovax are now in ongoing discussions with a pharmaceutical company about a prospective partnership in order to launch a checkpoint inhibitor combination study.

View the entire press release from Targovax

US patent for Norwegian cancer technology

Our member PCI Biotech, a Norwegian biopharmaceutical company, has secured a US patent for one of their cancer treatment technologies.

The treatment is called “fimaVACC” and is based on a type of light technology invented here in Norway at the Norwegian Radium Hospital.

The technology helps to transport cancer medicine more effectively to the targeted cancer cells. In this case, the technology enhances the effect of other cancer vaccines.

The US patent is for the use of fimaVACC together with cytokines, a small protein that is involved in cell signalling that regulates the immune responses.

The combination treatment has shown to be effective when enhancing the immune responses in cancer patients to fight off cancer.

Per Walday, CEO of PCI Biotech, said: “There are many vaccines under development utilising cytokines to elicit immune responses. The US patent granted today is important for PCI Biotech’s development strategy, as it supplements our ability to generate an internal future vaccine pipeline, in addition to bringing value for the fimaVACC technology in partnering efforts.”

New results from clinical study

Our member BerGenBio, a Norwegian biopharmaceutical company, has given an update on one of their phase II clinical trials.

The phase II trial aims to determine the clinical efficacy of one of the drugs BerGenBio has developed, namely “bemcentinib”.

Bemcentinib is an AXL inhibitor, a novel type of cancer therapeutic agent.

BerGenBio can now show that the first stage clinical efficacy endpoint has been met.

The clinical trial is evaluating a combination treatment, consisting of bemcentinib and the immunotherapy drug Keytruda.

The patients who have been treated in this trial all have non-small cell lung cancer (NSCLC) and have previously failed checkpoint inhibitor therapy.

Richard Godfrey, Chief Executive Officer of BerGenBio, said: “Reversing resistance to immune checkpoint inhibitors in patients who have relapsed on immunotherapy is a highly desirable alternative to the second-line chemotherapy standard-of-care. We are very excited with these early results in this challenging setting and look forward to expanding the study to confirm these findings and reporting comprehensive translational insight.”

View the entire press release from BerGenBio

 

Sign up to our monthly newsletter

Cancer Crosslinks 2020

Engaging presentations by leading international and Norwegian oncology experts at the 12th Cancer Crosslinks “Progress in Cancer Care – A tsunami of promises or Game Changing Strategies?”.

Oslo Cancer Cluster’s annual meeting gathered more than 350 delegates from all over Norway at the Oslo Cancer Cluster Innovation Park, and more than 50 participants followed the live stream. The record high participation shows the large interest in translational cancer research and the importance of the programme for the Norwegian oncology community.

Cancer Crosslinks has become one of the largest national meeting places for oncologists, haematologists, translational researchers, regulatory experts and industry representatives. The meeting offers a full day educational program.

The aim of the conference is to stimulate broader interactions between researchers and clinicians, to encourage translational and clinical research, and to inspire collaborations. Novel partnerships between industry, academia and authorities are essential to deliver new treatments and diagnostics to Norwegian cancer patients.

“At the start of 2020, cancer patients have more treatment options than ever before. Immuno-oncology is firmly established as the fourth pillar of cancer treatment and the tremendous progress in the field is reflected in increased survival rates,” said Jutta Heix, Head of International Affairs, Oslo Cancer Cluster. “However, many patients do not benefit from novel treatments and we still have significant gaps in our understanding of the complex biological mechanisms. Deciphering this complexity is a task for the decade to come. The Cancer Crosslinks 2020 speakers are shedding light on emerging concepts and key challenges and discuss how they are addressing them to advance cancer care.”

The audience at Cancer Crosslinks 2020.

The audience at Cancer Crosslinks 2020. Photo: Cameo Productions UB/Oslo Cancer Cluster

An inspiring programme

Referring to a record number of new oncology drug approvals in recent years and an enormous global pipeline of drugs in late-stage development, this year’s programme addressed the question “Progress in Cancer Care – A Tsunami of Promises or Game-Changing Strategies?”. Distinguished international experts from leading centres in the US and Europe presented emerging concepts, recent progress and key questions to be addressed for both solid and haematological cancers.

Cancer researchers and clinicians from all of Norway enjoyed excellent presentations and engaging discussions with speakers and colleagues.

“Cancer Crosslinks 2020 gave me an opportunity to listen to talks by international top scientists, and discuss some of the latest developments in translational cancer research with meeting participants from academia and industry in a relaxed and inspiring setting,” said Johanna Olweus, Head of Department of Cancer Immunology at the Institute for Cancer Research.

“Cancer Crosslinks is always a meeting that makes me proud of being part of Oslo Cancer Cluster. It is inspiring to see Norwegian and international participants come together to discuss recent progress in cancer research and how to develop cancer treatments for the patients,” said Øyvind Kongstun Arnesen, Chairman of the Board, Oslo Cancer Cluster.

The day programme was complemented with an evening reception in the city center where speakers and delegates continued their lively discussions and listened to an inspiring talk by Ole Petter Ottersen, President of Karolinska Institute, at Hotel Continental in Oslo.

Cancer Crosslinks was established by Oslo Cancer Cluster in 2009 in collaboration with the pharmaceutical company Bristol-Myers Squibb.

“Cancer Crosslinks 2020 has been a fantastic conference, where the presenters have given an excellent description of current and near future achievements within cancer research and the importance of understanding the underlying biology of cancer to rationally give patients the correct cancer therapy. In particular within immunotherapy, there is a need to understand the dynamic complexity of tumor immunology and how to apply the best and tailored immuno-oncology based treatment strategy for cancer patients,” said Ali Areffard, Disease Area Specialist Immuno-Oncology, Bristol-Myers Squibb.

This year, the pharmaceutical company Sanofi Genzyme Norway was a proud co-sponsor of the meeting.

“It was great to be able to provide a platform for interaction between the Norwegian scientific cancer environment and top international research capacities. Therefore, it was with huge enthusiasm Sanofi Genzyme co-sponsored this important conference. New treatment options in oncology are developing fast, where new treatment modalities provide clinicians with additional and superior options. New treatments specifically targeting the malignant cells, as well as activating the host immune response towards the cancer, provides tools to significantly improve current cancer treatments. This year’s Cancer Crosslinks conference gave an excellent insight into this,” said Knut Steffensen, Medical Advisor Hematology Nordic & Baltics, Sanofi Genzyme.

Interview with Prof. Jason Luke

View the interview with Prof. Jason Luke, by HealthTalk, in the video below:

Interview with Prof. Michel Sadelain

View the interview with Prof. Michel Sadelain, by HealthTalk, in the video below:

The speakers at Cancer Crosslinks 2020

Jason J. Luke, Director of the Cancer Immunotherapeutics Center, Associate Professor of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center

Jason J. Luke, MD, FACP, Director of the Cancer Immunotherapeutics Center, Associate Professor of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Stefani Spranger, Howard S. and Linda B. Stern Career Development Assistant Professor, Koch Institute for Integrative Cancer Research at MIT, Cambridge

Stefani Spranger, Howard S. and Linda B. Stern Career Development Assistant Professor, Koch Institute for Integrative Cancer Research at MIT, Cambridge, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Harriet Wikman, Professor, Group Leader, Center for Experimental Medicine, Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf

Harriet Wikman, Professor, Group Leader, Center for Experimental Medicine, Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

Vessela Kristensen, Professor, Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital

Vessela Kristensen, Head of Research and Development and Director of Research at the Dept. of Medical Genetics, Oslo University Hospital, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Peter A. Fasching, Professor of Translational Gynecology and Obstetrics, University Hospital and Comprehensive Cancer Center Erlangen-EMN

Peter A. Fasching, Professor of Translational Gynecology and Obstetrics, University Hospital and Comprehensive Cancer Center Erlangen-EMN, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

Karl Johan Malmberg, Professor, Group Leader Dept. of Cancer Immunology and Director STRAT-CELL, Oslo University Hospital, Norway.

Karl Johan Malmberg, Professor, Group Leader Dept. of Cancer Immunology and Director STRAT-CELL, Oslo University Hospital, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Michel Sadelain, Director, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center

Michel Sadelain, MD, PhD, Professor, Director, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Bjørn Tore Gjertsen, Consultant Hematology, Haukeland University Hospital, Norway.

Bjørn Tore Gjertsen, Professor of Hematology, Centre for Cancer Biomarkers CCBIO, Dept. of Clinical Science, University of Bergen, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Hermann Einsele, Professor, Chair, Dept. of Internal Medicine II, Head of the Clinical and Translational Research Program on Multiple Myeloma, Wuerzburg University Hospital

Hermann Einsele, Professor, Chair, Dept. of Internal Medicine II, Head of the Clinical and Translational Research Program on Multiple Myeloma, University Hospital Wuerzburg, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

 

Sign up to our monthly newsletter

PDT/PCI application grant

Radforsk will distribute funding to photodynamic therapy and photochemical internalization (PDT/PCI) related research. Application deadline is March 1st 2020.

In 2020 a total of MNOK 1,25 will be distributed. The maximum amount given to a project is NOK 300 000. Employees at the Oslo University Hospital are welcome to apply.

Please see more details here: Guidelines for resources to PDT/PCI related research.

Applications, containing a description of the project, can be sent to:
Bente Prestegård: bp@radforsk.no

If you have received a grant for PDT/PCI projects previously, you must provide a project report with your new application.

Here you may read more on the projects funded last year.

Click here to sign up for Oslo Cancer Cluster Newsletter

Oslo Cancer Cluster Innovasjonspark

Oslo Cancer Cluster Innovasjonspark med ny eierstruktur

Please scroll down for a version of this article in English.

Dette er endringene i eierstrukturen for Oslo Cancer Cluster (OCC) Innovasjonspark og OCCI Holding AS i begynnelsen av 2020.

OCC Innovasjonspark har siden starten vært eid av Utstillingsplassen Eiendom AS (UPL), Industrifinans OCCI AS, Siva Eiendom, Oslo Cancer Cluster, Radiumhospitalets Legat for Kreftforskning og OBOS Eiendom.

OBOS solgte sin eierandel til øvrige eiere tidligere i 2019. I en ny transaksjon 13. januar 2020 solgte UPL og Industrifinans OCCI AS sine aksjer til en ny eier, OCCI Invest AS. I samme transaksjon har Oslo Cancer Cluster solgt en mindre prosentandel.

Et kraftsenter innen kreft

OCC Innovasjonspark ligger på Montebello i Oslo ved siden av Oslo Universitetssykehus Radiumhospitalet og Institutt for kreftforskning. Parken åpnet offisielt i august 2015.

Innovasjonsparken huser mange bedrifter som utvikler kreftbehandlinger og diagnostikk, deler av Oslo Universitetssykehus, Kreftregisteret, Radforsk, Oslo Cancer Cluster Incubator, Oslo Cancer Cluster og Ullern videregående skole.

UPL og Industrifinans OCCI AS har sammen med de øvrige eierne, gjennom sitt eierskap i OCCI Holding AS, vært med på å utvikle OCC Innovasjonspark til et kraftsenter innen kreft. UPL har også hatt prosjektansvar og ansvar for å forvalte eiendommen.

– Vi er svært takknemlig for de investorene som investerte i et risikoprosjekt, som var nytt og banebrytende før det åpnet, sier Jónas Einarsson, styremedlem i OCC Innovasjonspark og Oslo Cancer Cluster.

Innovasjonsparken er i dag utleid til viktige samfunnsfunksjoner, og har blitt en naturlig del av et viktig økosystem for kreftforskning i Norge.

Gir stafettpinnen videre

Som en del av sin strategi, gir tidligere eiere nå stafettpinnen videre til nye og langsiktige eiere i OCCI Invest AS. Selskapet er eid av solide eiere, og det er etablert og forvaltet av Pareto Securities AS.

– Konseptet til innovasjonsparken utvikler vi videre – med nye langsiktige investorer. De kan vente seg mye av framtidig utvikling her, og jeg ser fram til å utvikle prosjektet videre med nye og gamle eiere, sier Einarsson.

Tron Sanderud, administrerende direktør i UPL, er også stolt av prosjektet. UPL vil fortsette som forvalter av eiendommen inntil videre.

Nytt bygg planlagt

Innovasjonsparken består i dag av ca. 36 000 kvm kontorer, laboratorier, møterom, auditorier, undersøkelsesrom og videregående skole for over 900 elever.

– Vi har planlagt å bygge nye 7 000-8 000 kvm i andre byggetrinn. Dette bygget vil bli utviklet med nye og spennende prosjekter i samarbeid mellom akademiske institusjoner og industrien. Vi planlegger å starte prosjekteringen av det nye bygget i løpet av 2020, forteller Einarsson.

Nye eierandeler i januar 2020

OCCI Invest AS: 53.7 %
SIVA Eiendom Holding AS: 40,7 %
Radiumhospitalets legat for kreftforskning: 4.6 %
Oslo Cancer Cluster: 1,0 %

 

Oslo Cancer Cluster Innovation Park gains new owners

The following changes are being made to the ownership of Oslo Cancer Cluster (OCC) Innovation Park and OCCI Holding AS as of the beginning of 2020.

OCC Innovation Park has since its opening been owned by Utstillingsplassen Eiendom AS (UPL), Industrifinans OCCI AS, Siva Eiendom, Oslo Cancer Cluster, Radiumhospitalets Legat for Kreftforskning and OBOS Eiendom.

OBOS sold their shares to the other owners earlier in 2019. In another transaction on 13 January 2020, UPL and Industrifinans OCCI AS sold their shares to a new owner, OCCI Invest AS. In the same transaction, Oslo Cancer Cluster has sold a smaller percentage of their shares.

A power centre in cancer

OCC Innovationpark is located in the Montebello area of Oslo, next to the Oslo University Hospital (Radiumhospitalet) and the Institute for Cancer Research. The park was officially opened in August 2015.

The Innovation Park houses many companies that develop cancer treatments and diagnostics, parts of Oslo University Hospital, the Cancer Registry of Norway, Radforsk, Oslo Cancer Cluster Incubator, Oslo Cancer Cluster and Ullern Upper Secondary School.

UPL and Industrifinans OCCI AS have together with the other owners, through their ownership in OCCI Holding AS, developed OCC Innovation Park to a power centre in cancer. UPL have also been responsible for projects and for managing the property.

“We are very thankful to the investors that invested in this risk project, which was new and ground-breaking before it opened,” said Jónas Einarsson, board member in OCC Innovation Park and Oslo Cancer Cluster.

The Innovation Park is today leased for important services to society and has become a natural part of an important ecosystem for cancer research in Norway.

Passing on the baton

As a part of their strategy, the former owners are now passing on the baton to new and long-term owners in OCCI Invest AS. The company is owned by solid owners and is established and managed by Pareto Securities.

“We are continuing to develop the concept of the Innovation Park – with new, long-term investors. They can expect a lot of future developments here and I look forward to develop this project further with new and current owners,” Einarsson said.

Tron Sanderud, CEO of UPL, is also proud of the project. UPL will continue as manager of the property.

New building planned

The Innovation Park today consists of approximately 36 000 square meters of offices, laboratories, meeting rooms, auditoriums, patient screening rooms and an upper secondary school with over 900 students.

“We have planned to build 7 000-8 000 square metres as part of the second construction phase. This new building will be developed with new and exciting projects in collaboration with academic institutions and the industry. We are planning to start the scheme for the new building during the course of 2020,” said Einarsson.

New shareholding as of January 2020

OCCI Invest AS: 53.7 %
SIVA Eiendom Holding AS: 40,7 %
Radiumhospitalets legat for kreftforskning: 4.6 %
Oslo Cancer Cluster: 1,0 %

 

Sign up to our monthly newsletter

Simone Mester mentoring students in the lab.

Mentor meeting with Mester

A few lucky Ullern students got to learn about cancer research from the PhD student Simone Mester at Oslo University Hospital.

The science and research programme at Ullern Upper Secondary School is completely new and the 32 students in the first class have received four mentors who will share their knowledge and experience with them. Early in December, the students were divided among the four mentors and got to visit them at their workplaces to hear more about what they do.

Simone Mester is a former student of Ullern Upper Secondary School and is today a cancer researcher at Rikshospitalet (Oslo University Hospital). Along with the three other mentors from the Oslo Cancer Cluster ecosystem, she has agreed to be a mentor for the students of the science and research programme at Ullern. Earlier in December, eight students visited her at her job.

“This is where I work,” Simone said as we arrived at the Institute for Immunology, which is located right next to Rikshospitalet.

Simone began the visit by telling the students about her background and the road that led her to where she is today.

Simone Mester tells Ullern students about how she started to do cancer research.

Simone Mester (above to the left) tell the Ullern students that she is part of the SPARK programme at the University of Oslo. Photo: Elisabeth Kirkeng Andersen

“I graduated from Ullern in 2012. That is when I got to do two work placements at the Radium Hospital – in Clinical Radiation Biology and Tumour Biology. That was the first time I got an impression of what everyday life for a researcher can be like and it was exciting!” said Simone.

She says that she combined the subjects mathematics, physics, chemistry and biology so that she would be able to study medicine. But as the application date drew closer, she became more and more unsure.

“I talked with Ragni, who is your teacher too, and she recommended that I study molecular biology at the University of Oslo. At the time, I didn’t fully understand what I was getting myself into and especially why I had to study all that physics,” said Simone.

During the course of her bachelor degree, Simone was still unsure and spent a lot of time with advisers at the Institute of Biology to get guidance on the best way forward. She decided to study a master degree and was included in a research group led by professors Inger Sandlie and Jan Terje Andersen, where she remains today as she is completing her PhD.

Researching new cancer medicine

“During my master degree, I wrote about how to tailor the duration of the effect of medicines and pharmaceuticals, and that is what I am still researching in my PhD. A lot of my time here is in the laboratory, where I am planning and conducting experiments on cells and mice, to see if I can achieve what I want,” Simone said.

“Now, I will show you what I spend most of my time on. It is about making proteins, so now I will show you the principal, and afterwards you can try to do the same in the lab. Moreover, you will meet a master student, Anette Kolderup, who will tell you about CRISPR,” said Simone.

CRISPR is short for “clustered regularly interspaced short palindromic repeats”. It is a family of DNA sequences found within the genomes of prokaryotic organisms, such as bacteria and archaea.

Quickly and pedagogical she shows the students the principals for modifying proteins through DNA modification, growing, amplifying and splitting cells.

“Now we will go to the lab, so you can try this yourselves,” said Simone.

We go one floor up, where there are offices and laboratories. The four girls go to Anette, who will show them what CRISPR is and how she uses the method in her master thesis, while the boys will start in the cell lab to make the same experiment that Simone just showed them.

Caption: Aleksander tries pipetting when he is working in the lab together with Simone. It is important to have a steady hand.

Aleksander tries to handle the pipette when he is working in the lab together with Simone. It is important to have a steady hand. Photo: Elisabeth Kirkeng Andersen

“Inside this hood, the work environment is completely sterile, so you need to wear lab coats and sanitize all the equipment and keep it inside the hood while we are working,” Simone explained.

Aleksander is the first to try and Simone shows him step by step how he can retrieve the proteins from a bottle she has prepared. Everyone soon understands that lab work is a craft that requires skillful hands. It is important to stay focused and remember which solutions that should be added and how, and when the pipettes should go on or off. Aleksander laughs when he has to change an unused pipette that he has touched, even with gloves on it is not allowed.

Then the students switch places and everyone gets to try their hands at everything. Two hours pass by quickly and a very happy group of students with their teacher Ragni leave to go home again.

Click here to sign up for Oslo Cancer Cluster Newsletter

Our highlights 2019

Are you wondering what we have been up to during the last year?

2019 has been an eventful year for our organisation and our members. We want to put a spotlight on some of the main developments, including successful events that were held, ongoing and new projects, our political initiatives and a section on biotech news from our members. Scroll down to learn more about what we have done. Click the images or titles to access full articles.

The year in pictures

Link to article on Cancer Crosslinks 2019

Cancer Crosslinks

17 January 2019

We kicked off the year with our annual conference for the Norwegian oncology community, namely Cancer Crosslinks. We offered a full-day educational programme featuring distinguished international and national experts. They presented recent advances in precision oncology and cancer immunotherapy. More than 300 participants joined Cancer Crosslinks on 17 January 2019 and enjoyed excellent talks and discussions presented by leading international oncologists and researchers and their Norwegian colleagues.


Link to article about Incubator Laboratory

Oslo Cancer Cluster Incubator expands the labs

1 March 2019

The year continued with more growth in the organisation. The Oslo Cancer Cluster Incubator expanded its laboratories to meet increasing demand from members. The startups have been successful and were in need of more space to perform their research. After moving around some office spaces, and a lot of groundwork to get the infrastructure in place, the two new labs were opened in March. Later in the year, our Incubator was also named one of the Top 20 Best Incubators in Europe, by Labiotech.eu.


Høring

The White Paper on the Health Industry and our input

5 april 2019

This year a white paper on the health industry in Norway came out for the first time ever. This was an important event because the document underlined some of our key issues, such as attracting more clinical trials to Norway, making better use of Norwegian health data and opening up for more public – privat collaboration. It was first released in April and a committee hearing was held in June, whereupon the document was approved by parliament in October.


Link to DIGI-B-CUBE project's website

Launch of EU Horizon 2020 project DIGI-B-CUBE

1 May 2019

In May, we launched a new Horizon 2020 project called DIGI-B-CUBE. DIGI-B-CUBE will foster the development of customized solutions and prototypes by providing innovative small and medium-sized enterprises (SMEs) in the EU and Associated Countries with access to vouchers of up to € 60,000. The voucher scheme will be launched in April 2020. Throughout the year, SMEs could engage in the project’s activities by participating in sectoral and cross-sectoral workshops as well as matchmaking sessions.


Link to article about Cambridge student's report and analysis

#InternationalClinicalTrialsDay

20 May 2019

This was also the first year that we celebrated International Clinical Trials Day on the 20 May 2019, because clinical trials are an important way for patients to gain access to new treatments. We wanted to put a spotlight on the lack of clinical trials in Norway and present some concrete suggestions on how this can be improved. So we asked for help from some of the brightest minds in the world! MBA students from Cambridge University agreed to write a report on patient recruitment to clinical trials in Norway, including incentives for how it can be improved.


Link to article on the event at Arendalsuka 2019.

Arendalsuka19 – Together for precision medicine

16 August 2019

During Arendalsuka 2019, we arranged a breakfast meeting on the development of cancer treatments of the future, together with LMI and Kreftforeningen. Arendalsuka has become an important arena for those who want to improve aspects of Norwegian society. We were there this year to meet key players to accelerate the development of cancer treatments. We wanted to highlight the cancer treatments of the future and whether Norway is equipped to keep up with the rapid developments in precision medicine.


Link to article about new researcher programme at Ullern.

New science and research programme at Ullern Upper Secondary School

17 August 2019

When the school year began, we were proud to announce the opening of a completely new science and research programme at Ullern Upper Secondary School. The programme is a collaboration between Oslo Cancer Cluster and Ullern Upper Secondary School. It is for students who wish to learn how researchers work. It will qualify students for university studies and specialise them in biomedical research, technology and innovation. Oslo Cancer Cluster will provide access to mentors, work placements and lectures.


Link to article on the Cancer Precision Medicine session at NLS days 2019.

NLS Days – Cancer Precision Medicine Session

12 September 2019

We were also present at the NLS Days in Malmö this year. We promoted the Norwegian life science industry and Nordic collaboration by standing together with other key players in one stand. This stand was visited by the Minister at the Norwegian Embassy in Stockholm. We also hosted the session on oncology titled “Cancer precision medicine: State-of-the-art and future directions”. The session covered recent advances in cancer immunotherapy and cell- and gene therapies.


 

TOP BIOTECH NEWS

The team of Vaccibody celebrating their recent successes. Click here to article about Vaccibody.

Vaccibody treats first patient with cervical cancer

23 February 2019

Our member Vaccibody has had an exciting year. From announcing that they have raised NOK 230 million in private placements, to showing proof-of-concept for their immunotherapy platform, called VB.10. Early in the year, they entered a clinical collaboration with pharma company Roche to test their treatment on patients with cervical cancer. During the summer, Vaccibody publicized that they had seen strong neo-antigen specific T cell responses in the patients of their clinical trials.


Woman in lab studying test tube samples. Click here to article about BerGenBio.

BerGenBio success with new treatment

3 April 2019

Our member BerGenBio has also had a successful year. Their immunotherapy drug bemcentinib has shown encouraging results in several clinical trials and they have received FDA Fast Track Approval. A Phase 2 combination trial for elderly patients with AML (acute myeloid leukemia) showed the treatment is well tolerated and has a promising efficacy. BerGenBio are also currently testing bemcentinib in combination with other immunotherapy drugs for patients with non-small cell lung cancer (NSCLC), triple-negative breast cancer (TNBC) and melanoma (skin cancer).


Ultimovacs enter Oslo Stock Exchange. Click here for article about Ultimovacs.

Ultimovacs enters Oslo Stock Exchange

3 June 2019

Our member Ultimovacs, a Norwegian cancer vaccine company, raised NOK 370 million and entered the Oslo Stock Exchange. The funds will go to financing the development of their universal cancer vaccine, UV1. A large clinical study will document the effect of the vaccine. First for patients with malignant melanoma (a type of skin cancer) at around 30 hospitals in Norway, Europe, USA and Australia. Ultimovacs also announced a large randomised study for 118 patients with mesothelioma, which will be placed at six hospitals in the Nordics.


Image of Dr James Allison, Dr Padmanee Sharma. Click here for article about Lytix Biopharma.

Nobel laureate joins Lytix Biopharma board

14 June 2019

In June, our member Lytix Biopharma announced that the Nobel Laureate Dr James Allison and his wife oncologist Dr Padmanee Sharma will become strategic advisors for the company. Dr James Allison was, together with Dr Tasuku Honjo, awarded the 2018 Nobel Prize in Medicine last December. The renowned cancer researchers received the award for their ground-breaking work in immunology. It has become the basis for different immunotherapies, an area within cancer therapy that aims to activate the patient’s immune system to fight cancer.


Dr. Richard Stratford and Dr. Trevor Clancy, founders of OncoImmunity. Click here for article about OncoImmunity.

OncoImmunity joins NEC corporation

2 August 2019

In the end of summer, the Japanese tech giant NEC Corporation acquired our member OncoImmunity AS, a Norwegian bioinformatics company that develops machine learning software to fight cancer. NEC has recently launched an artificial intelligence driven drug discovery business and stated in a press release that NEC OncoImmunity AS will be integral in developing NEC’s immunotherapy pipeline.


From all of us, to all of you …

A Very Merry Christmas and a Happy New Year!

 

Olweus sitting in front of her laptop and smiling.

Olweus wins prestigious award

Professor Johanna Olweus has been awarded the ERC Consolidator Grant for her cancer research project on immunotherapy.

The Norwegian cancer researcher Johanna Olweus was awarded a prestigious grant from the European Research Council (ERC) last week, as the only Norwegian scientist within Life Sciences. Olweus is Head of Department of Cancer Immunology at the Institute for Cancer Research and Professor at the University of Oslo.

Olweus will receive 2 million euros over a 5-year-period for her research project in immunotherapy called “Outsourcing cancer immunity to healthy donors”.

“Immunotherapy has revolutionized the treatment of metastatic cancer the last few years,” said Olweus. “Still, there is no curative treatment for many patients.”

 

Donor technology to save lives

Olweus worked in transplantation immunology when she first thought of the idea behind her innovative research. She saw that organ rejection triggers powerful immune responses, which could be used in cancer treatments too.

“The mechanism behind this rejection is connected to differences in the immune systems between the donor and the recipient,” said Olweus. “We have shown that we can utilise this mechanism to reject cancer cells in the laboratory.”

The treatment she has developed evades the patient’s tolerance to his or her cancer cells by utilising the immune response of a donor.

“We are exploiting the differences in the immune systems to mimic the rejection response you see in organ rejection and we target it to a specific cell type,” Olweus explained.

Her research group takes T cells from a healthy donor. Then, they use their patent-protected technology to select T cells with anti-tumour reactivity from the repertoire of the donor’s T cells. They next identify the T cell receptors (TCRs) from the selected T cells that can efficiently recognise specific peptides (fragments of proteins) expressed by the cancer cell. Upon reinfusion into the patient, such TCRs can work like heat-seeking missiles. They will make the T cells search for the cancer cells and destroy them.

(Read more about T cell immunogene therapy further down in this article)

 

What’s next?

Olweus has already demonstrated evidence in pre-clinical experiments on human cells from cancer patients in the laboratory and in mice that the treatment can work. Now, she is in advanced planning stages for clinical trials, in which the treatment will be tested on cancer patients.

“This award means I have long-term funding to perform the project and can secure talented personnel to do the science,” Olweus said.

Olweus is also in the process of exploring the commercialization potential of the T cell receptors that her research group has generated. The group has secured a prestigious commercialisation grant from Novo Holdings to possibly start a company.

“We have developed TCRs that can work in multiple haematological cancers. First, we need to show clinical efficacy. In the long term, we hope to cure some of the patients for whom there is currently no cure,” said Olweus. “To get the science implemented in clinical trials is really crucial.”

Olweus stresses the need for manufacturing facilities in Norway for cell- and gene therapies. To achieve this, she thinks there needs to be collaboration between regulatory authorities, clinicians and researchers.

“It is important that the Nordic medicinal agencies seize the opportunity to establish these therapies in the front line to make them available to patients in the Nordic countries,” said Olweus. “The Nordic countries could have a great advantage if the regulatory authorities are working together with the clinicians, academic scientists and also with industrial partners in early testing of new cell- and gene therapies.”

The Department of Cancer Immunology and the Department of Cellular Therapy have advanced plans for establishment of infrastructure for production of cells for gene therapy at Oslo University Hospital Radiumhospitalet in Oslo.

 

What is immunogene therapy based on T cells?

Olweus’ research is in a special area of cancer treatments called immunotherapy. This involves harnessing the patient’s immune system to create a response that will destroy cancer cells.

One category of immunotherapy is immunogene therapy. The first example of immunogene therapy that was approved by the FDA in 2017 involves the use of so-called CARs (chimeric antigen receptors), targeting CD19.

The process starts with the harvesting of the patient’s white blood cells from their blood, containing T cells. Then, the T cells are genetically modified in the lab to equip the cells with immune receptors that can target a molecule specific for B cells. Upon reinfusion into the patient’s blood, these T cells can then find the cancer cells and kill them, based on recognition of the B cell molecule called CD19.

This type of therapy has been immensely successful, curing up to 40-50% of patients that were previously incurable. The treatment has worked for patients with B cell cancers, such as B cell acute lymphocytic leukemia (ALL) and B cell lymphoma.

Image describing CAR T cell therapy.

The complete process of CAR T cell therapy to treat cancer. Illustration: National Cancer Institute (www.cancer.gov)

Not yet a cure for all patients

In spite of the great success of immunotherapies, such as checkpoint inhibition and CAR therapies, there is still no curative treatment option for the majority of patients with metastatic cancer (cancer that has spread). Checkpoint inhibition and various vaccination strategies rely on the patient’s own immune system, which often is insufficient in the end. In CAR therapies, the patient’s T cells are equipped with a reactivity that they did not have before, which can mediate cures. However, CAR 19 therapy does not cure 50-60% of patients with B cell cancers. Moreover, in spite of year-long efforts, no CAR therapy has yet been approved for other cancers than B cell cancers.

“The main reason is that there is a lack of good targets, which are highly expressed on the cancer cells and can be safely targeted,” said Olweus. “In the case of CARs targeting CD19, the normal and malignant B cells are killed alike, as CD19 is a normal, cell-type specific protein. This is, however, tolerated by the patient as we can live without normal B cells for prolonged periods. So you need to be sure that you can live without the normal counterpart of the cancer cell.”

CARs can only recognize targets in the cell membrane of the cancer cell. In contrast, a T cell receptor (TCR) is an alternative immune receptor that can recognise targets independently of where in the cell they are. Since more than 90% of proteins are inside the cell, gene therapy utilizing therapeutic TCRs can vastly increase the number of potential targets.

“The challenge for identification of therapeutic TCRs that target cell-type specific proteins is that the T cells in our own body have been trained to not recognise them,” said Olweus. “If not, we would all have autoimmunity. The technology we have developed can solve this challenge by utilization of donor T cells, that have not been trained not to recognize cells from another individual. This is where the mechanism of transplant rejection comes to use.”

There are two main challenges researchers are faced with when improving T cell therapy. The first is to identify new targets that are abundant in the cancer cells and can be safely targeted. The second is to identify immune receptors that recognize the targets with high efficacy and precision. Olweus’ research aims to answer both of these challenges.

 

Click here to sign up for Oslo Cancer Cluster Newsletter

Students at the DNB Nordic Healthcare Conference.

Students helped create podcast

Our school collaboration project inspires science and health communication.

Ullern students were thrown head first into a live work environment this week. They gave technical assistance to the making of the podcasts Radium and Utbytte at the DNB Nordic Healthcare Conference 2019.

All the students are currently studying the media and communications program at Ullern Upper Secondary School, including a class on sound design. As an extra subject, they also started their own youth companies Marconi Media UB and Audio Mind UB.

Radium held a podcast marathon together with the DNB podcast Utbytte at this year’s conference, with six different sessions, interviewing CEOs and investors. Throughout the day, the Ullern students were expected to sound check, record, and edit the podcast – all on their own.

The students attended a planning meeting one week earlier. They also arrived the evening before to rig the set: a glass studio in the middle of the conference area.

The participants in the podcast Radium and Utbytte at DNB Nordic Healthcare Conference 2019 in the glass studio.

The Ullern students helped to rig the podcast studio the night before the conference.

“It is a really nice experience, because we are thrown into the real word and do things in practice,” Andrea Asbø Dietrichson from Marconi Media UB explained. “We have to do everything ourselves, even though we are beginners, but we are learning!”

“It has been interesting to hear what they are talking about (in the studio) and learn how it is to work during such a big event,” Theo Rellsve from Audio Mind UB added. “It is the largest event we have been to, with lots of people and things happening all the time. We are happy to take part!”

Ullern students recording the podcasts Radium and Utbytte at DNB Nordic Healthcare Conference

The Ullern students had to think on their feet to solve problems while recording the podcast.

 

The aim of the school collaboration project between Ullern Upper Secondary School and Oslo Cancer Cluster is to inspire students to develop their talents. One aspect of the project is to give students a taste of what real working life is like.

“Personally, I would like to work in media,” Andrea said. “It is really inspiring to be here. Media and communications is a broad subject, but sound design is something not a lot of people know.”

“Audiomind has a clear vision about our future as a company. We are happy that we can get this experience and use it towards developing the company further,” Theo said. “… And create the best podcast recording company in Norway.”

Elisabeth Kirkeng Andersen, Communications Specialist for Radforsk and one of the persons behind the podcast Radium, was very satisfied with the work the students had performed. She gave them a top score.

“They have everything under complete control,” she said. “It is really fun to see their learning curve. They only studied sound design for a few months, but they have already helped at two live shows and they are always calm and service-minded.”

Student helping in the glass studio.

Elisabeth Kirkeng Andersen was impressed by how helpful and service-minded the students from Ullern were.

Want to find out more?

 

DNB Nordic Health Care Conference

DNB Nordic Healthcare Conference 2019

DNB are promoting start-ups in the Nordic healthcare sector!

This week, DNB is arranging the annual conference The DNB Nordic Healthcare Conference 2019 in Oslo. It is an opportunity for Norwegian health start-ups to connect with the investor environment and it is an important platform to promote the Nordic healthcare sector.

Start-up prize

One of the highlights of the event is the DNB Healthcare Prize, which is awarded every year to an early-stage healthcare company within pharmaceuticals, biotech, diagnostics, medtech and eHealth.

The companies are evaluated based on their innovation capacity, business potential and an ability to execute their strategy. They also have the opportunity to present their business cases in the semi-finals.

This year, our general manager Ketil Widerberg will be the moderator for the session with the six finalists for the fifth DNB Healthcare Prize. DNB’s Trine Loe, Head of Future and Tech Industries, will announce the winner of the prize.

Our job in Oslo Cancer Cluster is to accelerate the development of cancer treatments. By connecting investors and companies in many great projects each year, the DNB Nordic Healthcare Conference contributes to accelerating this development too.” Ketil Widerberg, General Manager, Oslo Cancer Cluster

Podcast studio

For the first time ever, there will be a glass studio recording live interviews with CEOs, analysts and opinion makers about the healthcare sector in the Nordics during the event.

This is a collaboration between the DNB podcast “Utbytte” and the Radforsk podcast “Radium”.

They will be interviewing relevant participants during the conference and receive technical assistance from Ullern Upper Secondary students.

Company presentations

We are also delighted that several of our members are attending this event.

The following of our members will be presenting in Auditorium 2: Nordic Nanovector, Photocure, Ultimovacs, Targovax and PCI Biotech.

Zelluna Immunotherapy and Vaccibody are part of a separate session in Meeting room C2 on Potential IPO candidates.

Don’t miss the presentations on their exciting cancer research!

Subscribe to Oslo Cancer Cluster Monthly Newsletter

Two of the speakers discussing with each other and laughing..

A café to advance T cell research

We want to accelerate cancer research in T cell immunotherapy!

In order to promote research collaboration, spread knowledge and exchange ideas, Oslo Cancer Cluster arranged a seminar together with Nature Research this week. The topic was T Cell Immunotherapy: Advances, Challenges and Future Directions.

What is T cell immunotherapy?

T cell immunotherapy is a rapidly growing area of research in cancer treatment. The research focuses on finding new ways to trigger the immune system to kill cancer cells.

The treatment method involves collecting T cells (a type of immune system cell) from a patient’s blood sample. The T cells are then modified in the laboratory so they will bind to cancer cells and destroy them.

One way to do this is called CAR T therapy. This involves adding a gene for a special receptor that binds to a specific protein (also called an antigen) on the patient’s cancer cells. The special receptor is called a chimeric antigen receptor (CAR). These cells are grown in large numbers in the laboratory and then infused in the patient to create an immune response.

Read more about CAR T cell therapies in this article from The National Cancer Institute

Image of researchers attending Nature Café on T cell immunotherapy in Oslo.

Many researchers attended the Nature Café for the opportunity to learn more about recent advances in T cell immunotherapy. Photo: Christian Tandberg

Why is cell therapy important?

Research into T cell immunotherapy is important, because it has the potential to treat and cure cancer. T cell immunotherapy can help cancer patients live longer and potentially has fewer side effects than traditional treatment methods, such as chemotherapy, radiation therapy and surgery.

However, more research is needed to make T cell immunotherapy work on all kinds of cancer. For example, some patients with haematologic cancer, cancers that develop in the blood-forming tissue, relapse into disease after treatment. Moreover, T cell immunotherapy does not work on all patients with solid cancer tumours yet.

Researchers wish to know why some cancers are resistant to T cell immunotherapy and why some patients acquire resistance to the treatment over time. Some patients also experience toxic side effects to T cell immunotherapy. Moreover, researchers are continually searching for possible new antigens (proteins) to target.

There are still many unanswered questions and that is why we need to accelerate the research.

Two researchers in the audience asking questions.

Members of the audience were eager to find out more about this rapidly growing area of research. Photo: Christian Tandberg

Why did we arrange this event?

The Norwegian research environment in cancer immunotherapy is world-class. But Norway is a small country and researchers need access to international partners and expertise to develop their findings.

The purpose of the event was to highlight recent findings in T cell immunotherapy. There was also the opportunity to discuss ongoing challenges and opportunities in the development of these types of treatments.

Among the guests were several prominent Norwegian cancer researchers, the pharma industry, hospital clinicians, biotech start-ups, and more. During the seminar, many of the participants in the audience asked follow-up questions and the café breaks were buzzing with conversations between researchers.

Three researchers in the audience discussing with each other.

The event was an opportunity to discuss with and learn from prominent researchers in the cell therapy field. Photo: Christian Tandberg

Watch the video below to see a few of the participants’ reactions:

Meet the speakers

The moderator for the event was Saheli Sadanand, Associate Editor, Research Manuscripts at Nature Medicine. Photo: Christian Tandberg

The moderator for the event was Saheli Sadanand, Associate Editor, Research Manuscripts at Nature Medicine. Photo: Christian Tandberg

 

The first speaker was Sara Ghorashian from the University College London

The first speaker was Sara Ghorashian from the University College London. Dr. Ghorashian is a consultant Paediatric Haematologist at Great Ormond Street Hospital for Children in London, and the co-investigator or lead UK investigator for six different CAR T cell clinical trials. She talked about her research to improve outcomes of CAR T cell therapy in patients with acute lymphoblastic leukemia. This is a type of cancer in the blood. Photo: Christian Tandberg

 

Attilio Bondanza, who is a physician-scientist and the CAR T cell program leader at Novartis Institutes of Biomedical Research in Basel, Switzerland.

The second speaker was Attilio Bondanza, who is a physician-scientist and the CAR T cell program leader at Novartis Institutes of Biomedical Research in Basel, Switzerland. Before joining Novartis, Dr. Bondanza was a professor at the San Raffeale University Hospital, where he led the Innovative Immunotherapies Unit. Dr. Bondanza talked about his work to model CAR T cell efficacy and CAR T cell-induced toxicities pre-clinically. Photo: Christian Tandberg

 

Sara Mastaglio, who is a physician scientist specialising in haematology at San Raffaele Scientific Institute, in Milan

The third speaker was Sara Mastaglio, who is a physician scientist specialising in haematology at San Raffaele Scientific Institute, in Milan. She has been actively involved in the development and clinical application of CAR T cell therapies. Dr. Mastaglio discussed her research on genome-edited T cells for the treatment of haematological malignancies. Photo: Christian Tandberg

 

Aude Chapuis, who is an assistant member of the Fred Hutchinson Cancer Research Center in Seattle

The last speaker was Aude Chapuis, who is an assistant member of the Fred Hutchinson Cancer Research Center in Seattle. In addition to running a lab, she sees patients as an attending physician at the Fred Hutch Bone Marrow Transplant Program at the Seattle Cancer Care Alliance. Dr. Chapuis discussed mechanisms of response and resistance to instruct next generations of T cell receptor gene therapy. Photo: Christian Tandberg

 

Want to find out more?

In February 2020, the journal Nature Research will publish an article with a more detailed overview of the speakers, their presentations and the research. We will provide a link here when it is available!

If you enjoyed this event, please subscribe to our newsletter to receive invitations to our upcoming events and a digest of our latest news.

 

We want to thank our sponsors for helping us make this event happen.

Sponsor logos: Novartis Oncology, ThermoFisher Scientific and Celgene

Bjellesermoni Oslo Børs PCI Biotech

PCI Biotech works with Astra Zeneca

PCI Biotech reveals they have been collaborating with Astra Zeneca since 2015.

Our member PCI Biotech grabbed the opportunity during their third quarter report this week to announce who their mystery collaboration partner since 2015 has been. The “top-ten pharma company in the world”, who has been helping them, is Astra Zeneca.

PCI Biotech is a company that is based on a technology called photochemical internalisation, which was invented by Professor Kristian Berg from the Norwegian Radium Hospital. The technology is a kind of drug and gene delivery method. It aims to improve the release of big molecules and chemotherapy drugs to the targeted cancer cells. The technology can also potentially be used for a wide variety of diseases and treatments.

The company currently develops three different programs:

  1. FimaCHEM: enhancing the effect of chemotherapy drugs for localised treatment of cancer
  2. FimaVACC: delivering cancer vaccines effectively to the cancer cell and kick-starting a immune response
  3. fimaNAc: delivering nucleid acid therapeutics

You can read more about the revolutionary light technology in the following article:

Astra Zeneca has said that the results from their tests of fimaNAc look very promising in the oncology area. Now, they wish to see if the same technology can work in other disease areas. The pre-clinical collaboration agreement between PCI Biotech and Astra Zeneca lasts until the end of 2019 and the following 6 months will be used to evaluate the potential for further collaboration.

Per Walday, CEO of PCI Biotech, had the following to say about the collaboration:

“Ensuring sufficient intracellular delivery of nucleic acid therapeutics is a major hurdle to realise the vast therapeutic potential of this drug class. We believe that the fimaNAc technology can play an important part in solving this delivery challenge.  PCI Biotech’s current collaborations and their progress suggest that external partners share this view.”

Listen to Per Walday and Ronny Skuggedal talk more about PCI Biotech, the “light technology”, their third quarter report and future milestones in the podcast Radium episode 103.

Sign up to Oslo Cancer Cluster newsletter!

Image of Kaare Norum.

Kaare R. Norum has died

Kaare R. Norum died on Friday 22 November 2019, at an age of 86 years.

Kaare R. Norum was a professor of nutrition and interested in the connection between our diets and the risk of developing cancer. Norum was a driving force behind gathering the scattered cancer research environments in Oslo.

Norum initiated Oslo Cancer Cluster in 2006, together with Jónas Einarsson, CEO of RADFORSK. At the time, Norum and Einarsson realised that a natural cluster within oncology had developed around the Norwegian Radium Hospital.

The old Ullern Upper Secondary School was back then located on the premises next to the Norwegian Radium Hospital. When the old school was due to be refurbished, Norum and Einarsson had an idea. They wanted to build a new school instead, which would become more than just an ordinary school.

Norum signed the collaboration agreement with the school in 2008. During the following years, Norum, the cluster and the school worked so that the school could become part of a completely new innovation park. In this new building, cancer research would unite the school, the research environments and industry.

Making the dream a reality was at times arduous, but in the end, it was worth it. The old school was torn down in the spring of 2012 and Oslo Cancer Cluster Innovation Park was officially opened in August 2015.

The big auditorium in Ullern Upper Secondary School today is aptly named after Kaare Norum. He will always be the man that the students – the researchers of the future – will be inspired by.

 

Image of Jonas Einarsson and Kaare Norum.

Kaare Norum was active in the establishment of Oslo Cancer Cluster and Oslo Cancer Cluster Innovation Park. In this image, Jónas Einarsson and Kaare R. Norum participated in the opening of the Innovation Park on 24 August 2015. Photo: Gunnar Kopperud

 

Kaare Norum will be remembered as an ambitious man, who always wished to create new opportunities for science and development. He was generous and he promoted both people and projects.

He was a source of inspiration and support in the work with developing Oslo Cancer Cluster, and he meant a lot to us. He was a part of the board of Oslo Cancer Cluster as an honorary member since the establishment in 2006. He was also, during many years, an important mentor for Jónas Einarsson.

Kaare Norum was forthright and not afraid to challenge established truths or formalities when he looked for support in his most important issues. Lucky for us, in Oslo Cancer Cluster, we were one of his important issues.

Rest in peace, Kaare Norum.

 

Memorial message by,

Jónas Einarsson (CEO of RADFORSK)

Ketil Widerberg (General Manager of Oslo Cancer Cluster)

Øyvind Kongstun Arnesen (Chairman of the Board of Oslo Cancer Cluster)

 

 

Kaare R. Norum (24 December 1932 – 22 November 2019)

Norum was the principal of the University of Oslo from 1999 to 2001.

He wrote about 300 scientific articles and was known internationally for his research on nutrition. He also wrote several books in popular science and course books about health and nutrition.

Norum was Commander of the Royal Norwegian Order of Saint Olav and of the Swedish Royal Order of the Pole Star.

Read more on Kaare R. Norum’s Wikipedia page

A cancer doctor speaking to a room of students.

Who wants to be a doctor?

We join forces with Ullern Upper Secondary School and Oslo University Hospital every year to arrange theme days for students, so they can get a sense of what it is like to be a doctor.

On 18 November 2019, students from the health program with specialisation in biology and chemistry at Ullern Upper Secondary School, gathered in Kaare Norum Auditorium at Oslo Cancer Cluster Innovation Park to learn more about opportunities in medicine. The initiator is Truls Ryder, father of a former student at the school. Ryder is a surgeon at the Norwegian Radium Hospital and has this year once again planned theme days for the students together with his colleagues.

For almost five hours, the Ullern students listened to some of the best oncologists in Norway talk about how they treat cancer patients affected by different forms of cancer. The students are studying either science or health subjects in their third year.

The theme day is a part of the close collaboration between Ullern Upper Secondary School and the Norwegian Radium Hospital, Oslo University Hospital. For two days, 18 of the students who consider applying to medical or nursing school will follow the oncologists around the different departments of the Norwegian Radium Hospital.

“The students who have been chosen to job shadow are in their last year and will soon choose their next program of study,” Bente Prestegård said. She is the project manager for the school collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster.

The purpose of the job shadowing is that students who participate will get an inside look into the opportunities that exist in medical subjects before choosing what to study next.

A fantastic initiative

Truls Ryder is the initiator behind the theme day and the following job shadowing, like he was last year. His children have gone to Ullern Upper Secondary School and he works as an attending physician at the Norwegian Radium Hospital.

“Thank you to the initiator Truls Ryder and his colleagues who have dedicated two days for this. It was really successful last year and we are incredibly happy to be able to offer the students this opportunity again,” Prestegård said.

Prestegård has contributed to the planning of the theme days with her long experience from other projects between members of Oslo Cancer Cluster and the school.

You can read about last year’s theme day and job shadowing here.

A varied program

The theme day today was spent in Kaare Norums Auditorium from 11:30 am to 4:00 pm. During these hours, the students have gained an in-depth introduction to modern cancer treatments, from radiology to plastic surgery, and what it is like to be a cancer patient and receive treatment.

“I look forward to the program myself, because there are many skilled experts, who will present what they do in cancer treatment and more. The goal with such a broad program is to give the students the greatest possible understanding of all the different directions and opportunities that medical study can offer,” said Ryder.

Program (Monday 18 November 2019):

11:30-11:55 Welcome, with Attending Physician Truls Ryder

11:55-12:20 Cancer treatment with focus on colon cancer, with Professor Kjersti Flatmark

Break

12:30-12:55 “Fight HPV” with Attending Physician Ameli Trope from Kreftregisteret

12:55-13:20 What is anesthesiology? with Professor Ulf Kongsgaard

Break

13:40-14:05 Melanoma, with Attending Physician Anna Winge-Main

14:05-14:30 Plastic surgery – more than just cosmetics! with Head of Clinic and Attending Physician Kim Tønseth

Break

14:40-15:05 Radiology – More than just x-rays! with Attending Physician Marianne Fretheim

15:05-15:30 What is it like to be a patient? with Jeanett Hoel, Chairman of the Norwegian Gynaecological Cancer Society and Attending Physician Kristina Lindemann

15:30-15:45 Summary and practical information concerning clinical rotation, with Attending Physician Truls Ryder

Sign up to OCC monthly newsletter!

Image of Ketil Widerberg, general manager of Oslo Cancer Cluster.

Tre viktige temaer i helsenæring

Næringskomiteens innstilling om helsenæringsmeldingen er klar. Dette mener Oslo Cancer Cluster om tre viktige temaer i innstillingen.

Næringskomiteens innstilling om helsenæringsmeldingen trekker frem mange viktige aspekter ved norsk helsenæring. Helse- og omsorgskomiteen kommenterer også meldingen i samme innstilling.

Oslo Cancer Cluster ønsker å kommentere spesielt tre temaer som disse to komiteene tar opp i innstillingen til Stortinget.

– Nå er det viktig at alle som ønsker en sterk norsk helsenæring følger opp hva meldingen betyr i praksis, sier Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

Kliniske studier

Komiteen går inn for en bedre tilrettelegging for kliniske studier og bruk av helseregistre, slik Helsenæringsmeldingen foreslår. En samlet næringskomité mener videre at forventningene til innovasjon og samarbeid med forskning og næringsliv i oppdragsdokumenter til helseforetakene må følges opp med insentiver og finansieringssystemer.

– Vi applauderer at komiteen krever finansieringssystemer for dette. Vi ønsker å understreke hvor viktig det vil være å innføre en takst for kliniske studier som gjør at leger og andre helsearbeidere får tid og insentiver til å utvikle bedre behandling for pasienter – i samarbeid med industrien, sier Ketil Widerberg.

Oslo Cancer Cluster foreslo i sitt høringsinnspill til helsenæringsmeldingen å etablere et nasjonalt senter for kliniske studier, og at senteret knyttes til en felles database for helsedata hvor både myndigheter, forskning og industri kan få tilgang til løpende pasientdata fra behandling av den enkelte pasient.

Oslo Cancer Cluster foreslo også å etablere et nordisk senter for celleterapi. Det er vel innen rekkevidde, tatt i betraktning at Norge er ledende på immunterapi og spesielt celleterapi spesielt innen kreft – og at kreft er spydspissen i kliniske studier internasjonalt.

Begge disse forslagene fra Oslo Cancer Cluster har komiteen trukket frem i sin innstilling.

Norge har blitt det minst attraktive landet i Norden for kliniske studier. Oslo Cancer Cluster understreker at Norge må tørre å være først ute på to vesentlige områder for å snu denne utviklingen:

Norge må nå ta lederrollen i utviklingen av klinisk dokumentasjon og være et foregangsland i godkjenning av ny presisjonsmedisin.

Den muntlige høringen i Næringskomiteen kan sees i sin helhet på Stortingets nettsider.

Offentlig-privat samarbeid

– Oslo Cancer Cluster har alltid prioritert arbeidet for en sterkere kultur for samarbeid og dialog mellom helsetjenesten, akademia og næringsliv. Det er et kontinuerlig arbeid og vi ser med glede at komiteen stiller seg bak dette, sier Widerberg.

Komiteen peker på at Norge i løpet av de siste årene har bygd opp verdensledende helseklynger som nettopp Oslo Cancer Cluster og Norway Health Tech. Disse klyngene har utviklet økosystemer som bidrar til å etablere nye bedrifter og øke konkurransekraften.

Komiteen ber regjeringen “vurdere tiltak som kan sikre videreføring av klyngene som en møteplass mellom det offentlige og private og som bidragsytere til internasjonal vekst.”

For Oslo Cancer Cluster er det motiverende å se at dette blir poengtert.

Helsedata

– Helsedata er et tema som Oslo Cancer Cluster har engasjert seg i siden oppstarten for over ti år siden, men som vi ser nå blir stadig mer aktuelt grunnet sammensmeltingen av biologi og teknologi, sier Widerberg.

Komiteen peker på mange muligheter med helsedata, som er en viktig del av norsk helsenæring – ikke minst for å gi pasienter best behandling.

– Vi ser imidlertid behovet for en konkretisering av hvordan vi legger opp til bruk av helsedata i utvikling av legemidler. Vi trenger også en mer konkret plan for hvordan vi kan bruke helsedata for å forstå genetisk data for å bedre helsen vår, sier Widerberg.

Næringskomiteens innstilling om helsenæringsmeldingen ble behandlet i Stortinget 26. november 2019. Møtet ble filmet og ligger i Stortingets videoarkiv.

 

Les mer

 

Sign up to our monthly newsletter

Two persons working in front a two laptops.

What’s new in Q3?

Positive results from clinical trials, revenue growth and new clinical collaborations … Read some of the third quarter developments from our members below.

BerGenBio logo

BerGenBio

  • BerGenBio showed results from their clinical trial for patients with non-small cell lung cancer, who have previously been treated with chemotherapy. The results showed they met primary and secondary endpoints.
  • The company presented interim safety data from a Phase Ib/II trial. They are testing their drug bemcentinib in combination with pembrolizumab on melanoma patients. The data shows the combination is well tolerated by patients.
  • The U.S. Food and Drug Administration (FDA) has granted bemcentinib Fast Track Designation. This means they will do an expedited review of the investigational drug. The designation is for the treatment of elderly patients with acute myeloid leukemia (AML), who have relapsed.

Read more in the press release from BerGenBio

Nordic Nanovector logo

Nordic Nanovector

  • Nordic Nanovector raised approximately NOK 243 million in private placement of new shares. This will provide further funds to continue the clinical development of their drug Betalutin, manufacturing and other commercial activities.
  • The company presented new results from a clinical trial, testing their drug Betalutin on patients with non-Hodgkins lymphoma (a type of blood cancer). The median duration of response was 13.6 months for all responders and 32.0 months for complete responders.
  • The company reported 3 out of 3 patient responses in the first patient cohort in one of their clinical trials. The patients were given Betalutin in combination with rituximab to treat 3rd-line relapsed or refractory follicular lymphoma (also a type of blood cancer).

Read more in the press release from Nordic Nanovector

Photocure logo

Photocure

  • Photocure reported a revenue growth of 42% in local currency for the US market.
  • The revenues in the Nordics declined 7% to NOK 9.9 million (NOK 10.6 million) in the third quarter.
  • The company entered into a licensing agreement with Asieris Meditech Co. to commercialize the product Cevira to the global market. Cevira is a non-invasive photodynamic therapy for HPV-related (cervical) diseases.

Read more in the press release from Photocure

 

Targovax logo

Targovax

  • Targovax presented new data from the first part of the clinical trial of their oncolytic virus. The trial has shown clinical responses in three out of nine patients. This treatment targets patients with refractory advanced melanoma (skin cancer).
  • The company announced an expansion of the clinical trial of the oncolytic virus ONCOS-102 in combination with the checkpoint inhibitor Imfinzi. This trial is open for patients with advanced peritoneal malignancies (a rare cancer that develops in the tissue that lines the abdomen).
  • The company publicised that Oslo University Hospital will become a site for the clinical trial of their oncolytic virus ONCOS-102.

Read more in the press release from Targovax

 

Ultimovacs logo

Ultimovacs

  • Ultimovacs presented long-term results from the clinical study of their therapeutic cancer vaccine UV1. The patients have non-small cell lung cancer and the trial has shown a 4-year overall survival rate of 39% (7 of 18 patients are still alive).
  • New data from their prostate cancer trial showed a 5-year overall survival rate of 50% (11 of 22 patients are still alive).
  • A phase II clinical trial for patients with malignant melanoma (skin cancer) is projected to start in the first quarter of 2020.

 

More third quarter reports from our other members are or will be made available on their respective websites.

Photo of the audience at the opening of EHiN 2019.

EHiN 2019 – highlights

Did you miss EHiN this year? Or simply want to catch up on the highlights relating to cancer research? Read our short summary below.

EHiN, short for e-health in Norway, is Norway’s national conference on e-health. It is a meeting place where decision-makers, the business community and the health sector gather to talk, share knowledge, learn from each other and collaborate.

This year, Oslo Cancer Cluster became a co-owner of EHiN (together with ICT Norway and Macsimum), because we believe new technologies and digital solutions are essential in the development of novel cancer treatments. This will only be possible if public and private organizations find new models of collaboration and EHiN is a great platform to create those future partnerships.

Read this interview to find out more about how new technologies can improve cancer research

 

Photo from the panel discussion on health data at EHiN 2019.

A conversation on health data during day 1 of EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Capturing the value of health data

An engaging dialogue on the value of health data took place at the end of the first day.

Health data will revolutionize how we understand and how we treat diseases, such as cancer. Better diagnosis and monitoring will change how we design our healthcare systems. A central question is how we capture the value of this revolution. Some fear multinationals like Google and Facebook will exploit our unique health data for profit. Others fear that Norwegians will value and protect their health data too well, resulting in innovation happening elsewhere. Is there a golden mean between giving full access to health data and charging the highest price?

Ketil Widerberg, General Manager at Oslo Cancer Cluster, led the conversation with a panel of four. Joanne Hackett, Chief Commercial Officer at Genomics England, brought an international perspective and experiences of how they have collected 100 000 genomes from patients with rare diseases. Sigrid Bratlie, award-winning cancer researcher, shared her knowledge of new cancer treatments and the opportunities they present in conjunction with health data. Heidi Beate Bentzen, Doctoral Research Fellow at University of Oslo, represented some of the legal considerations when dealing with health data. Rajji Mehdwan, General Manager at Roche, contributed with the pharma industry perspective.

 

Photo of the expo area during EHiN 2019.

The crowded crowded expo area during EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Networking in the expo area

The expo area is the heart and soul of EHiN. This is where public and private organizations can meet under informal circumstances and create new partnerships. These collaborations are what lead to knowledge sharing and that digital solutions can be implemented in the health sector.

This year, a pharma company was present in the expo area for the very first time, our member Roche. Roche are investing more in genetic testing and personalized medicines than ever before. But why are genetic tests important for cancer treatments? Cancer is more than a disease, it is about the composition of DNA, RNA and proteins – and how these relate to one another. Every cancer tumor is therefore unique, but by finding out more about the genetic sequence, one can develop personalized treatments that target the tumor effectively.

In the expo area, a variety of start-ups, IT companies, health clusters, public organisations and academic institutions were also present. For two days, the area was buzzing with interactions, meetings and talks.

We hope you carry on the conversations and that we see all of you again next year!

Find your health mentor

Oslo Cancer Cluster Incubator has joined a new national health mentor program to help Norwegian startups connect with the right experts.

Are you a health startup? Do you need help to get going? Eight health clusters and incubators have joined forces to provide mentors and specialist knowledge to Norwegian health startups, through the new health mentor program from Innovation Norway. One of them is Oslo Cancer Cluster Incubator.

Bjørn Klem, general manager of Oslo Cancer Cluster Incubator, commented:

“Innovation Norway’s new health mentor program is a good scheme for startups that need help to establish their company. Access to a network of health mentors give the companies the opportunity to get tailor-made guidance in a very challenging development phase.”

This is the first time Innovation Norway offers a mentor program for a specific industry. The scheme is a pilot project for year 2020. Bård Stranheim, responsible for the mentor program in Innovation Norway, said:

“Good mentors are an important key to growth. This scheme will give high-quality mentors. Maybe this pilot project will be the basis of a new model to connect world-class mentors with Norwegian startups to prepare them for international growth.”

 

The health mentor program consists of:

 

 

Sign up to our monthly newsletter

Jonas Einarsson and Elisabeth Kirkeng Andersen, from RADFORSK, are the two people behind the podcast Radium.

100 episodes of cancer research & development

From a relatively modest podcast to packed live shows at Arendalsuka, Radium has in three years grown into a leading cancer podcast in Norway.

Radium is a weekly podcast about Norwegian cutting-edge cancer research and development, produced by the evergreen investment fund Radforsk. Radforsk has 15 companies in its portfolio, of which five are on the stock market and 10 are also members of Oslo Cancer Cluster. Elisabeth Kirkeng Andersen, Communications Manager, and Jónas Einarsson, CEO of Radforsk, bring guests on the show to discuss recent development in the oncology field and news from the portfolio companies.

“Three years ago, Elisabeth came to me and said ‘Now, we are going to do something new – we will make a podcast’. I replied ‘That’s great! But what is a podcast?’” Einarsson said.

Andersen then took the first steps and employed students from the media program at Ullern Upper Secondary School to help with sound production.

 

Interested investors

Andersen and Einarsson quickly noticed there is great interest in the podcast, especially from investors and shareholders. They want to stay updated about Norwegian cancer research, a relatively new but growing sector. They often send in questions, which Andersen and Einarsson ask the guests in the studio.

“We try to simplify things. It is easier to hear it explained by someone from a company, than to read a difficult press release,” Andersen said.

“I think the best episodes are when we get a good dialogue with the CEOs of the companies, especially when things get a little heated. I try to lure them out on the thin ice to make them tell us more,” Einarsson said.

The popular podcast format has exploded in recent years, giving people access to accessible conversations that they can listen to whenever they want.

“There is no strict direction. We say that we are just going to have a conversation and then we talk for an hour or more,“ Einarsson said. “We have a down-to-earth style, but Elisabeth will pull us back if the guests or I dive too deep into details.”

 

Affecting health policies

Radium has also had several events with live streaming. At Arendalsuka this year, the premises were fully packed with eager listeners at both of their live shows.

“At Arendal, we try to have podcasts with others in the cancer field and aim to be more political. We think it has worked very well, because we can reach out to even more people when we stream the event,” Elisabeth said.

“I think the podcast will interest people working in the health industry and health politics too,” Einarsson said. “For example, the health minister was a guest for an entire hour, talking about current challenges.”

 

Best of Norwegian research

Radium regularly invites famous names from the Norwegian research community too. Steinar Aamdal, a prominent researcher in cancer immunotherapies has been a guest. Another cancer expert, Håvard Danielsen, who works on the DoMore project at Oslo University Hospital, has also talked on the podcast.

Øyvind Bruland and Roy Larsen, the serial entrepreneurs who started Algeta, Nordic Nanovector and OncoInvent, also visited the show.

Soon, Radium will host Kristian Berg, the researcher behind PCI Biotech’s technology: photochemical internalisation technology.

“I believe people think it is very interesting to, through the podcast, meet the people who actually have researched and developed the treatments,” Einarsson said.

 

For the patients

Einarsson and Andersen have also noticed that cancer patients or their family members listen to the podcast to hear about what is happening in the field.

“It is important to communicate that we do this for the patients. An important driving force is that we wish to contribute to developing better treatments for patients,” said Andersen.

“Every time the survival rate increases, it means one patient gets to live longer – and perhaps that is because of a treatment we have helped to develop,” said Einarsson. “To be a part of the journey with immunotherapy over the last 20 years, for an old doctor like me, is absolutely fantastic.”

 

Listen and download Radium:

 

Send in your ideas for guests and topics directly to Radium.

 

Episode 100 was recorded at Kulturhuset in Oslo, with several interesting guests, a friendly atmosphere and, delicious food and beverages. Stay tuned for upcoming live events via Radforsk’s Facebook page!

 

Sign up to OCC monthly newsletter

Ketil Widerberg, general manager, Oslo Cancer Cluster.

Machine learning improves cancer research

This interview was first published on EHiN’s official website. Scroll down to read it in Norwegian.

 

EHiN is important in order to realise the opportunities that digital technologies can give patients, society and industry.

Ketil Widerberg is the General Manager of Oslo Cancer Cluster, which is a co-owner of EHiN 2019. We asked Ketil Widerberg a few questions about why digitalization and EHiN are important for cancer research.

–Can you describe in short what Oslo Cancer Cluster is and what you do?

Oslo Cancer Cluster is a non-profit member organization that gathers public and private players. The goal is to transform cancer research into treatments that change patients’ lives. We are a National Centre of Expertise (NCE).

–You are now co-owners of EHiN. What do you wish to achieve with that?

Oslo Cancer Cluster has the last ten years developed and established well-known meeting places (such as Cancer Crosslinks) by combining different disciplines. In the future, digitalisation and precision medicine (e-health) will be a central area in cancer research.

EHiN is a perfect match in this area. EHiN will be an important platform in order to realise the opportunities that digital technologies can give patients, society and industry.

–What do you think AI will mean for cancer research?

Today’s breakthroughs in treatment will often only work on 3 out of 10 patients. Artificial intelligence will change medicine in two ways. First, how we understand cancer. In the same way as the microscope gave us the ability to see things on a cellular level, data will now help us to see patterns we never would have discovered.

Second, how we treat cancer will change. We have to be ready to give the right treatment to the right patient at the right time. One way of giving individualised treatments is to recognize patterns – patterns that show how a patient will react from a treatment.

After that, you can see in larger groups of people if this pattern is repeated. Then, you select the patients that have a positive response to the treatment. This will, to begin with, not be a perfect method, but if you repeat this process, the modern machine learning systems can make it better and better.

–We know that health research takes time. How can digital solutions improve this?

Digitalisation will accelerate the development of new treatments in several areas. One area is clinical studies. Digital technology can help to adjust studies according to patient responses and enable digital control arms that shorten years off the developmental period. Digital solutions can make clinical trials more flexible and efficient, by reducing the administrative burden on companies and at the same time make it simpler for patients to enroll.

Gradually, as the volume and speed of the data increases, we have the opportunity to use new machine learning algorithms – such as deep learning. The algorithms can identify digital biomarkers that will give faster and better development of new treatments.

–Why is EHiN an important meeting place for Norway?

EHiN is relevant for Oslo Cancer Cluster because the IT revolution is about to hit the oncology field. Personalized treatments, genomics and the use of health data will soon develop into one of the most important areas of “e-health”. This is also an area that is of great interest for the IT industry, for data storing, data analysis, machine learning, pattern recognition, connecting different data sources, and so on.

At the same time, the technology will also impact the academic world and the pharmaceutical part of the health sector, and contribute to set the rules for the whole value chain in health processes in decades to come. EHiN wishes, in collaboration with Oslo Cancer Cluster, to build Norway as an important international hub in the area of e-health – by gathering and showcasing the different activities at the conference and in other settings.

 

–Selvlærende datasystemer gjør kreftforskning stadig bedre

EHiN er ifølge Ketil Widerberg viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet. Widerberg er daglig leder for Oslo Cancer Cluster, som i høst 2018 gikk inn som medeier av EHiN.

Vi stilte Ketil Widerberg noen spørsmål om hvorfor digitalisering og EHiN er viktig for kreftforskning.

–Kan du beskrive kort hva OCC er og hva dere gjør?

OCC er en non-profit medlemsorganisasjon som samler offentlige og private aktører. Målet er å gjøre kreftforskning til produkter som endrer pasienters liv. Vi er et NCE (National Centre of Expertise).

Dere har blitt med på EHiN. Hva ønsker OCC å oppnå med det?

Oslo Cancer Cluster har de siste 10 årene utviklet og etablert anerkjente møteplasser (som Cancer Crosslinks) ved å kombinere forskjellige fag-grener. Fremover vil digitalisering sammen med presisjonsmedisin (e-Helse) være et sentralt område innenfor kreft.

EHiN er en perfekt match for dette området. I tråd med OCC sin strategi vil EHiN være viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet.

–Hva tror du AI kan bety for forskning rundt kreft?

Dagens behandlingsgjennombrudd vil ofte bare virke på 3 av 10 pasienter. Kunstig intelligens vil endre medisin på to måter. Hvordan vi forstår kreft. På samme måte som mikroskopet ga oss evnen til å se helt ned på cellenivå, vil data nå hjelpe oss til å se mønster vi aldri ellers ville oppdaget.

Hvordan vi behandler kreft vil forandre seg. Vi må derfor klare å gi den rette behandlingen til den rette pasienten til rett tid. En måte å kunne gi individbasert behandling er å gjenkjenne mønster. Mønster som viser hvordan en pasient vil reagere på en behandling.

Deretter se i større grupper mennesker om dette mønsteret gjentar seg. Da kan man plukke ut de pasientene med positivt utbytte av behandlingen. Dette vil i begynnelsen ikke være en perfekt metode, men hvis man gjentar denne prosessen, kan moderne selvlærende datasystemer gjøre den stadig bedre.

–Vi vet at helseforskning tar lang tid. Hvordan kan digitale løsninger bidra på dette?

Digitalisering vil akselerere utviklingen av ny behandling på flere områder. Ett område er kliniske studier. Digital teknologi kan gjøre at studier justeres etter respons og muliggjøre digitale kontrollarmer som korter år av utviklingstiden. Kliniske forsøk kan bli fleksible og effektive ved å redusere administrative byrder på firmaer, og samtidig gjøre det enklere for pasientene.

Etter hvert som volumet og hastigheten på data øker, har vi mulighet til å bruke nye maskinlæringsalgoritmer – som dyplæring. Det kan identifisere digitale biomarkører som vil kunne gi raskere og bedre utvikling av ny pasientbehandling.

–Hvorfor er EHiN en viktig møteplass for Norge?

EHiN er faglig relevant for OCC fordi IT-revolusjonen er i ferd med å slå inn på onkologi feltet. Persontilpasset medisin/behandling, genetikk og bruk av helsedata vil snart utvikle seg til et av de viktigste områdene innen “e-helse”. Dette er også et område som er av stor interesse for IT-bransjen (datalagring, analyse, machine learning, mønstergjenkjenning, kobling av ulike datakilder osv.).

Samtidig vil teknologien også få konsekvenser for den akademiske verden, samt den farmasøytiske delen av helsesektoren, og bidra med å legge rammene for hele verdikjeden i helseprosessene i tiårene fremover. EHiN ønsker, i samarbeid med OCC, å bygge Norge som en viktig internasjonal hub på området e-Helse ved å samle og vise frem ulike aktiviteter på konferansen og også i andre sammenhenger.

 

Sign up to OCC monthly newsletter

The mentors of the student research program at Ullern Upper Secondary School meet the students for the first time.

Meet the mentors

Read the questions and answers from when the students at Ullern Upper Secondary School met their mentors for the very first time.

In the middle of October, 32 students at the researcher program at Ullern Upper Secondary School got to meet their four mentors for the next year. After a short introduction, there were many questions from the students to the mentors. It took an hour and a half before their curiosity settled down and it was time for pizza.

Simone Mester: “I am a former student of Ullern Upper Secondary School and now I am doing a PhD in molecular biology. In the long term, I could imagine working in the private sector developing pharmaceuticals.”

Øyvind Kongstun Arnesen: “I am a doctor and worked many years in Lofoten. After that, I worked some years as a surgeon in an emergency room, before I began working for a large German pharmaceutical company called Boehringer Ingelheim. Eight years ago, I became CEO for Ultimovacs. Ultimovacs are trying to develop the worlds first cancer vaccine.”

Jónas Einarsson: “I am a doctor, and did the first part of my medical degree on Iceland, because my grades weren’t the best. Then, I worked many years as a general practitioner in Lardal, before moving to Oslo and becoming the manager of the first private hospital in Norway. In parallel with this, I did a degree in economy and management at BI. Finally, I became the CEO of Radforsk, who among other things, initiated the Oslo Cancer Cluster Innovation Park and this school collaboration.”

Bjørn Klem: Bjørn is the fourth mentor, but he was unfortunately ill during the first meeting. Janne Nestvold, Laboratory Manager at Oslo Cancer Cluster Incubator, came in his place. Nestvold has a PhD and has worked as a researcher for many years.

 

After the introductions, the teachers at the researcher program, Ragni Fet and Monica Flydal Jenstad held a short presentation of the upcoming work with the mentors.

Then, there were several questions from the audience.  We were really impressed by the amount and quality of the questions, that concerned both education, job opportunities and, research and development, which both Kongstun and Mester are a part of. The questions rained down and the answers came in a session that continued for over an hour and a half. You can read some of them below. Then it was time for some pizza and mingle.

The next time the students and the mentors will meet will be in the beginning of December. The students will meet in the mentors’ workplaces and see with their own eyes what they do on an everyday basis.

 

Questions and answers:

What kind of medical specialisation does Jónas and Øyvind have?

“We are both general practitioners and have not specialised. You do not have to.”

 

What kinds of jobs can you do after you are finished, Simone?

Simone: “I can do a postdoc to become a researcher in academia. I am still a student while I am doing my PhD, but I receive a salary. It is normal to do two postdocs, then you can become group leader or professor. I don’t think I will follow that route, I would much rather work in a private company or start something myself. I think that seems more exciting.”

Jónas: “Simone will get a job immediately in one of our companies if she wants it.”

 

Are there many developments every day to find a cancer vaccine?

Jónas: “It takes time, so the short answer is no.”

 

What is the greatest challenge with the cancer vaccine that Ultimovacs are developing?

Øyvind: “To make it work? A good and difficult question.”

Øyvind explained further about the development and testing of the vaccine at Ultimovacs.

 

What is your PhD about, Simone?

Simone: “I develop technology that prolongs the half-life of medicines. It is a patient-focused PhD, since it is a big inconvenience for the patient to take medicines often, but I hope we can succeed in prolonging the half-life so that patients can take the medicine once a week or once a month.”

 

What should one study if one wants to work with medical development or pharmaceutical development?

Jónas: “Molecular biology, physiology, IT, physics, chemistry, biology, statistics  – there are many opportunities.”

Øyvind: “In our company, we have physiologists, doctors, protein chemists, dentists and pharmacists working right now.”

 

When you went to upper secondary school, did you know that you would be doing what you do today?

Jónas: “I chose the natural science, but did not know anything else.”

Øyvind: “I only knew I wanted to study natural science.”

Simone: “I was thinking about studying a medical degree, but I am happy that I chose molecular biology.”

Janne: “I thought about becoming a researcher and thought it seemed exciting. You should absolutely think widely and not just the easiest solution when you are still in upper secondary school. You will benefit from that when you begin to study at university.”

 

Have you always been interested in biology, or was there something special you saw that made you excited about it? 

Jónas: “Yes, always.”

Øyvind: “Biology in itself is very fascinating. There is so much we do not know, like where memories are stored in the brain, for example. We know very little about how the body works, so that is very fascinating.”

 

The cancer vaccine you are developing, will it work against all cancers or only specific types of cancer?

Øyvind: “It will work to treat and protect against most cancer types.”

 

What did Bjørn do in PhotoCure, the company he worked for before becoming manager for Oslo Cancer Cluster Incubator?

Jónas: “He was Head of Research. He is a very smart guy, and he has also worked a lot with the regulatory side.”

 

Sign up to OCC monthly newsletter

Image of the front page of the booklet "Cancer in Norway 2018"

New report: Cancer in Norway 2018

Cancer Registry of Norway has released the report Cancer in Norway. These are the main points. 

Since the 1950s, Cancer Registry of Norway has published statistical reports of the cancer incidence in Norway almost annually. The past 14 editions of these reports can be found online on the Cancer Registry’s official report page.

In 2018, 34 190 new cancer cases were reported. In order to understand how cancer changes over time in the population, the Cancer Registry examines rates over five-year periods.

Differences between men and women

18 321 men were diagnosed with cancer in 2018.

These are the most common cancer types among men:

  • Prostate cancer, 27,9%
  • Lung cancer, 9,3%
  • Colon cancer, 7,9%
  • Cancer in the urinary tract, 6,9%
  • Skin cancer, non-melanoma, 6,1%

In men, the rates for all cancers combined have been stable. Rates for prostate and lung cancer are decreasing, and so are the rates for rectum cancer, while the trend for colon cancer points slightly upwards.

15 869 women were diagnosed with cancer in 2018.

These are the most common cancer types among women:

  • Breast cancer, 22,3%
  • Colon cancer, 10,1%
  • Lung cancer, 10,0%
  • Melanoma, 6,8%
  • Skin cancer, non-melanoma, 6,4%

There has been a 5,6% increase in the rates among women from the previous five-year period to the most recent one. This reflects increased rates of breast, colon, lung and skin cancer.

Cancer rates by immigrant group

This year the report Cancer in Norway presents cancer rates by immigrant group for the first time.

At the beginning of 2019 immigrants represented 14,3% of the Norwegian population. According to Statistics Norway, about 48% of the immigrants are from Europe, 14% from Africa and 34% from Asia, leaving another 4% from the rest of the world.

Immigrants from outside Europe tend to have lower cancer rates than people born in Norway, the report shows.

In the report foreword Giske Ursin, Director of Cancer Registry of Norway, writes:

“Cancer is predominantly a disease caused by western lifestyle and environment, and many immigrants bring with them a healthier lifestyle associated with lower cancer rates. We may all profit from learning and adapting to a healthier lifestyle.”

Although long-term trends among immigrants tend to be favourable, there are some noteworthy exceptions, according to the report. Immigrants from countries with high smoking prevalence, such as a number of the Eastern European countries, have higher rates of lung cancer.

Socioeconomic factors also matter

The special issue of the report goes in depth on rates among immigrants and also by socioeconomic factors. These factors also matter, according to Giske Ursin:

“We know that socioeconomic status plays a role for several cancers, and a key question is whether there are independent effects linked to income, education and immigrant status. We therefore examine all three factors. We found that a number of cancers are more common among those who have short education or low income. However, we found that the differences between immigrant groups remain after adjustment for socioeconomic factors.”

This information can be used to reduce cancer risk, according to the Cancer Registry – but one size does not fit all in terms of prevention. Ursin writes:

“We need a more targeted approach if we are to prevent cancer in all population subgroups at higher risk of cancer.”

Read the report

  • Cancer in Norway 2018 – Cancer incidence, mortality, survival and prevalence in Norway is available in a printed version. The report is free of charge, and can be ordered by sending an email to kreftregisteret@kreftregisteret.no
  • Or download the report, in English and Norwegian, from the website of the Cancer Registry of Norway
  • The special issue part about immigrants and socioeconomic factors is only available in Norwegian for the time being

 

Sign up to OCC monthly newsletter

Björn Klem and Janne Nestvold celebrate that the Oslo Cancer Cluster Incubator has been nominated among Europe's 20 best incubators.

Among Europe’s finest 

OCC Incubator was recently rated among the top 20 European biotech incubators. Here’s why!

Every year, the biotech website Labiotech makes a top 20 list of the best biotech incubators in Europe. Oslo Cancer Cluster (OCC) Incubator is the only Norwegian incubator on the list this year, together with well established incubators in Belgium, Switzerland, Great Britain, Germany, Sweden and other European countries.

Labiotech.eu is the leading digital media covering the European biotech industry, with over 150,000 visitors every month.

Size and relevance matters

We asked Clara Rodríguez Fernández, Senior Reporter in Labiotech, about the selection criteria. She replied:

“We aim to include the most relevant incubators across different European countries. We selected those based on their size and relevance within their country’s biotech ecosystem and also based on feedback from the industry contacts we sent our preliminary list to.”

See the full top 20 list on labiotech.eu.  

Means a lot in Norway

In Norway, the list has attracted attention.

“This means a lot. We have a strong and attractive ecosystem around Oslo Cancer Cluster on research and commercialization of pharmaceuticals. The latest success story is the tech company OncoImmunity that was bought by the tech giant NEC this summer.” Håkon Haugli, CEO Innovation Norway

Read more about NEC OncoImmunity in this news story.

Håkon Haugli continues:

“We also recognize that Norway, through Oslo Cancer Cluster, is positioned very well for the European Union’s next big endeavour, ‘Missions’, which will be launched next year. Cancer is one of five focus areas, which the European Union will channel considerable project resources into, to resolve one of our time’s big societal problems.”

The European Union has defined five research and innovation mission areas, inspired by the Apollo 11 mission to put a man on the moon. The missions aim to deliver solutions to some of the greatest challenges facing our world, such as cancer, climate change, healthy oceans, climate-neutral cities and healthy soil and food.

You can read more about the European research and innovation missions on this official website.

A boost of motivation

For OCC Incubator, being on the top 20 list is a nice boost of motivation. Bjørn Klem, General Manager OCC Incubator, puts it this way: 

“We are excited about being rated among the best biotech incubators in Europe. It motivates us to become the most attractive space for innovations in the field of cancer!” 

 

Want to read more about biotech incubators and start-up opportunities? 

 

Sign up to our monthly newsletter!

ThermoFisher Scientific Norway lectures students at Ullern

A peak into the cancer research world

Ullern Upper Secondary School is unique, because it shares its building with world-class cancer researchers. Last month, all new Ullern students got to experience this first-hand.

This year’s School Collaboration Days in Oslo Cancer Cluster Innovation Park were held right before the autumn holiday. All the first-year classes at Ullern Upper Secondary School were given a guided tour around the Innovation Park to get to know the companies that they share their everyday lives with.

The purpose of the School Collaboration Days is to give the first-year students at Ullern Upper Secondary School an understanding of what the different companies in the Innovation Park and departments of Oslo University Hospital do.

The common denominator for all of them is cancer and many are developing new cancer treatments. While the Cancer Registry of Norway are collecting statistics and doing cancer research, Sykehusapotekene (Southern and Eastern Norway Pharmaceutical Trust) produce chemotherapy and antibodies for patients that are admitted to The Norwegian Radium Hospital and the Department of Pathology (Oslo University Hospital) gives the cancer patients their diagnoses.

 

IN PICTURES

The student guided tours of Oslo Cancer Cluster Innovation Park

Jonas Einarsson lecturing to students at Ullern

True to tradition, Jónas Einarsson, CEO of the evergreen fund Radforsk, opened the School Collaboration Days in Kaare Norum auditorium with a common lecture. In this image, Einarsson is talking about the development of the Montebello area, which Oslo Cancer Cluster Innovation Park is a part of. The first Radium Hospital was opened in 1932 and the following year Ullern School was moved from Bestum to the same place that houses Oslo Cancer Cluster Innovation Park today.

 

Kreftregisteret lecturing to students at Ullern.

Elisabeth Jakobsen, Head of Communications of the Cancer Registry of Norway, tells the first year students about what they do and the risk factors for developing cancer. Also, she asked the students several questions about how to regulate the sales of tobacco, e-cigarettes and many other things.

 

Thor Audun Saga, CEO of Syklotronsenteret ("the Norwegian medical cyclotron centre"), talks to Ullern students.

Thor Audun Saga is the CEO of Syklotronsenteret (“the Norwegian medical cyclotron centre”). He told the students about what they do, what a cyclotron is and how they use cyclotrons to develop cancer diagnostics.

 

ThermoFisher Scientific Norway lectures students at Ullern

The management of Thermo Fisher Scientific Norway are also housed in the Oslo Cancer Cluster Innovation Park. They told the students about the Norwegian invention called “Ugelstadkulene”. This is both the starting point for million of diagnostic tests across the world and revolutionary (CAR T) cancer treatments, 45 years after they were invented.

 

Students guided through the Oslo Cancer Cluster Incubator Laboratory

The tour was ended with a walk through the laboratory of the Oslo Cancer Cluster Incubator. The students were given an inside look at the work done and instruments used by the cancer researchers in the lab. This area is only one or two floors above their regular class rooms. The student could see first-hand the opportunities there are in pursuing a career in research, entrepreneurship and innovation.

Torbjörn Furuseth, Targovax

New clinical trial at Oslo University Hospital

Our member Targovax has announced a new clinical trial for skin cancer patients at Oslo University Hospital.

The second part of a clinical trial for patients with refractory advanced melanoma (a type of skin cancer) will take place at Oslo University Hospital.

“We are excited that we can offer this treatment alternative to patients in our home country, and hopefully it will help us to recruit more patients faster,” said Torbjørn Furuseth, Chief Financial Officer, Targovax.

Targovax is a Norwegian biotech company that develops oncolytic viruses called ONCOS-102 to destroy cancer cells. The treatment is targeted towards solid tumours that are especially hard to treat. The ultimate goal is to activate the patient’s immune system to fight cancer.

Promising results

“The trial is until now conducted at three top hospitals in the US, where competition for patients to clinical trials is high. Oslo University Hospital is also a great cancer center, and currently there are no trials offered to this patient population,” said Furuseth.

Three out of nine patients responded to the treatment during the first part of the clinical trial. This included one complete response and two partial responses.

Dr. Magnus Jäderberg, CMO of Targovax, said: “It is promising to see this level of clinical responses after only three ONCOS-102 injections, including a complete response, which is rare in this heavily pre-treated patient population.”

A forceful combination

The treatment involves a combination of an oncolytic virus and an anti-PD1 checkpoint inhibitor.

The oncolytic virus is a modified virus that has been developed to selectively attack and kill cancer cells. You can read more about the oncolytic viruses on Targovax’s official website.

The anti-PD1 checkpoint inhibitor disrupts the interaction between proteins on the surface of cancer cells. This stops the cancer from evading the immune system.

“Earlier this year, we decided to expand the trial to test a more intensified schedule of ONCOS-102, and it will be interesting to see whether this regimen can generate more and deeper clinical responses,” said Dr. Alexander Shoushtari, Principal Investigator, Memorial Sloan Kettering Cancer Centre, New York.

The second part of the clinical trial is currently enrolling new patients.

 

Sign up to OCC newsletter

Mandag 7. oktober la finansminister Siv Jensen (til venstre) fram nasjonalbudsjettet og et forslag til Stortinget om statsbudsjett for 2020. Foto: Stortinget

Mer til e-helse og sykehus

I Statsbudsjettet 2020 foreslår regjeringen flere temaer som er relevante for Oslo Cancer Cluster, blant annet å øke investeringer i e-helseløsninger, satse mer på sykehusene og utvide opsjonsskatteordningen for små oppstartsselskap. Men det står lite konkret om kreft.

– Helse og omsorg har stor plass i budsjettet også til neste år, sa finansminister Siv Jensen i finanstalen hun leverte fra Stortingets talerstol 7. oktober 2019.

Jensen ramset deretter opp satsingsområdene som regjeringen har på helse i Statsbudsjettet 2020:

  • mer moderne sykehus med ny teknologi og nye behandlingsformer, flere fastleger og legespesialister
  • oppfylle opptrappingsplanen for rusfeltet 
  • kortere ventetid for pasienter ved sykehusene
  • bedre omsorgstjenester

Du kan lese hele finanstalen på regjeringens nettside.

Lite konkret om kreft

Statsbudsjettet 2020 nevner lite konkret om kreft, faktisk bare to punkter.

  1. Regjeringen foreslår å øke bevilgningene til nasjonalt screeningprogram for tarmkreft med 24,7 millioner kroner i 2020. Det blir en samlet bevilgning på om lag 97 millioner kroner.
  2. Radiumhospitalet skal videreutvikles som et spesialisert kreftsykehus. Dette nevnes i omtalen av den planlagte sykehusomleggingen i Oslo.

Kliniske studier nevnes ikke spesifikt i Statsbudsjettet 2020.

100 millioner til Gaustad og Aker

Regjeringen foreslår at 100 millioner kroner går til nye sykehus på Aker og Gaustad i Oslo. Samtidig foreslås en låneramme på 29,1 milliarder kroner til prosjektet. Det skal legge til rette for at Helse Sør-Øst og Oslo universitetssykehus kan gå i gang med prosjektering og bygging av et nytt, stort akuttsykehus på Aker og et samlet og komplett regionsykehus inkludert lokalsykehusfunksjoner på Gaustad.

I tillegg foreslås en lånebevilgning til universitetsarealer ved det nye sykehuset i Stavanger.

Satsing på e-helse

Regjeringen foreslår et løft for den nasjonale e-helseutviklingen, med 373 millioner kroner. Dette skal få opp tempoet på digitaliseringen i helsetjenesten og legge til rette for å utnytte norske helsedata bedre.

– Norge har omfattende og verdifulle helsedata som er bygget opp over lang tid. Regjeringen ønsker å gjøre disse lettere tilgjengelig for forskere og andre som har behov for å analysere helsedata. Helseanalyseplattformen vil kutte ned på unødvendig byråkrati og tidstyver. Regjeringen foreslår å øke bevilgningen med 131 millioner kroner, sier helseminister Bent Høie i en pressemelding om temaet.

Regjeringen vil også etablere et «standardisert språk», et kodeverk og terminologi i helse- og omsorgssektoren, for å bedre pasientsikkerhet og skape mer samhandling.

Til sist vil regjeringen øke bevilgningene til modernisering av Folkeregisteret i helse- og omsorgssektoren og til forvaltning og drift av de nasjonale e-helseløsningene kjernejournal, e-resept, helsenorge.no, grunndata og helseID.

Pressemeldingen om satsingen på e-helse kan du lese på regjeringens nettside.

Les mer om prioriteringer i budsjettforslaget for Helse og omsorgsdepartemente på side 25 i Statsbudsjettet 2020. 

Dobbelt opsjonsfordel for start-ups

Regjeringen vil utvide ordningen for gunstig skattemessig behandling av opsjoner i små oppstartsselskaper. Maksimal opsjonsfordel per ansatt dobles fra 500 000 kroner til en million kroner. Regjeringen foreslår også å utvide ordningen til å omfatte flere selskap.

I tillegg til at opsjonsfordelen dobles, økes maksimalt antall ansatte i selskap som kan være i ordningen fra 10 til 12. Det gjør at flere små selskap kan benytte ordningen.

Opsjonsskatteordningen for små oppstartsselskap ble innført fra 2018. Under denne ordningen kan ansatte få opsjoner som gir rett til å kjøpe aksjer i selskapet til en fastsatt pris. Ordningen innebærer blant annet at skatteplikten på opsjonene utsettes salg av aksjene kjøpt ved hjelp av opsjonene. Denne skatteutsettelsen er begrenset til en maksimal opsjonsfordel, som nå foreslås doblet.

Utvidelsene må godkjennes av ESA før de kan tre i kraft. Regjeringen opplyser at den jobber for at endringene vil bli godkjent før nyttår, slik at de kan gjelde fra 1. januar 2020.

Flere relevante temaer i Statsbudsjettet

  • Skattefunn: Regjeringen foreslår endringer i Skattefunn-ordningen som skal stimulere næringslivet til å investere enda mer i forskning og utvikling (FoU). Forslagene øker den årlige Skattefunn-støtten med 150 millioner kroner fra 2020. Samtidig foreslår regjeringen flere tiltak som gir bedre kontroll med ordningen. Les mer om skattefunnforslaget på regjeringens nettside.  
  • Protonsenter: 26 millioner foreslås til protonsenter i 2020.
  • Fastlegene: Regjeringen foreslår å bruke om lag 350 millioner kroner til å styrke og videreutvikle fastlegeordningen. De varsler flere tiltak for å styrke ordningen i en handlingsplan som skal komme våren 2020.
  • Legespesialisering: Regjeringen foreslår 10 millioner kroner til allmennleger i spesialisering (ALIS)-kontor i Bodø, Trondheim, Bergen, Kristiansand og Hamar. Tilskuddet gis for å bistå kommuner i regionen til å planlegge, etablere, inngå og følge opp ALIS-avtaler.
  • Statsbudsjettet 2020 er på 1 414,6 milliarder kroner. Staten forventer å tjene 245 milliarder kroner på olje– og gassvirksomheten til neste år.
  • Du kan fordype deg i Statsbudsjettet 2020 på regjeringens temaside.

Sign up to OCC monthly newsletter

Bente Prestegård from Oslo Cancer Cluster and Ragni Fet from Ullern Upper Secondary School with two of the students in the research program.

Educating the cancer researchers of tomorrow

Ullern Upper Secondary School and Oslo Cancer Cluster are paving the way for students to become the researchers of the future.

A new program has been launched this autumn for Ullern students who wish to learn how researchers work. It will qualify students for university studies and specialise them in biomedical research, technology and innovation. It is the only researcher program for upper secondary school in Norway.

“The researcher program at Ullern will be a place where students are encouraged and guided to become independent students, with a need to explore, an understanding of methods and a desire to learn,” said Ragni Fet, teacher at Ullern Upper Secondary School. “They will learn to gather good and reliable information, they will do research in practice through varied experiments, and they will gain real insight into job opportunities in the research industry.”

The program is a joint initiative between Oslo Cancer Cluster and Ullern Upper Secondary School, who have been collaborating since 2009. This has offered students in the natural sciences, health, media and electricity special opportunities to learn science subjects outside a traditional classroom setting.

“The purpose of launching a researcher program at Ullern Upper Secondary School is to recruit the researchers, scientists and entrepreneurs of the future,” said Bente Prestegård, Project Manager at Oslo Cancer Cluster. “We know that these jobs are needed, and we want to teach students about what it means to be a researcher or entrepreneur. With better insight into the professions, the students will be able to make a safe career choice.”

 

With a passion for science

About 30 students have already begun this unique program at Ullern Upper Secondary School. One of them is Henrikke Thrane-Steen Røkke.

“I chose the researcher program because I personally enjoy studying the natural sciences and innovation, and I wanted more of those subjects. I had entrepreneurship as an elective at secondary school and thought it was a lot of fun. I think it seemed very exciting and wanted to learn more,” Henrikke explained. “I hope I can gain insight into what it is like to work as a researcher. I hope we can see and experience a lot of it in practice and to work in depth with some subjects in certain areas.”

The program is especially well suited for students with an interest in the natural sciences, such as Peder Nerland Hellesylt, who also recently begun the program.

“I applied to this program because I have always had an interest for the natural sciences and mathematics,” Peder said. ”I think this program is very interesting because we aren’t just sitting and writing, but get practical tasks too, for example experiments.”

 

Mixing theory with practice

Ullern Upper Secondary School is located right next to The Norwegian Radium Hospital, The Institute for Cancer Research, The Norwegian Cancer Registry and the Oslo Cancer Cluster Incubator, with its over 30 big and small companies. The students are therefore never far from world class researchers. This offers the unique opportunity to take advantage of the co-localisation and use mentors from the research milieu in the teaching.

“Through the collaboration with Oslo Cancer Cluster, we will obtain external lecturers to the class rooms; bring the students to multiple, exciting innovation companies and laboratories; and the students will attempt real research experiments themselves. We are raising the level and are ambitious for the sake of the students,” Ragni Fet said.

 

Sign up to OCC newsletter

The panel discussion at the Precision Medicine session at NLS Days 2019.

Forward-looking session on cancer precision medicine

Emerging therapies, digital solutions and AI were central topics when international experts met during the oncology session at the Nordic Life Science Days 2019.

Oslo Cancer Cluster hosted the session on oncology titled “Cancer precision medicine: State-of-the-art and future directions” at the Nordic Life Science Days this year. The session covered recent advances in cancer immunotherapy and cell- and gene therapies. International experts met to discuss how big data, artificial intelligence and digital solutions are changing drug development, diagnostics and patient care.

 

AI revolutionizing cancer research

Dr. Mark Swindells on artificial intelligence and drug discovery.

Mark Swindells on artificial intelligence and drug discovery.

Mark Swindells, PhD, COO Exscientia, presented how artificial intelligence is changing and driving drug discovery now.

“On average 2 500 compounds need to be synthesized and tested to develop a candidate molecule for clinical trials. We want to apply AI to this artisan area of drug discovery. By reducing the amount of compounds synthesized and tested, we will reduce the overall cost and time to get drugs to market,” Swindells said.

This is a fast moving area and one of the examples of technical innovation Swindells gave was Exscientia’s Active Learning algorithms, which have been benchmarked to work as well as – and in some cases better than – the most successful humans.

In the area of precision oncology, Swindells said: “We are particularly interested in the acquisition of resistance in oncology as an area where our technology could be applied.”

 

Kaisa Helminen, CEO Aiforia, focussed on how the use of artificial intelligence can make image analysis more accurate and efficient.

Dr. Kaisa Helminen on artificial intelligence and image analysis.

Kaisa Helminen on artificial intelligence and image analysis.

“Due to the ageing population, more samples need to be analysed and many countries suffer from serious shortage of pathologists. Many patients are left waiting for their diagnosis and treatment. Manual, visual image analysis is slow and highly subjective. There is a risk for misdiagnosis, which can be dramatic for the patient and costly for the healthcare system.”

Aiforia has built an AI platform that supports medical experts in diagnostics.

“For the first time we are bringing AI tools for doctors’ use, so they can easily create their own AI algorithms,” Helminen explained. “Instead of visually estimating something from samples, we bring accurate, numerical information. AI algorithms are consistent from day to day, week to week, removing the human error component,”

We are bringing AI tools for doctors’ use.

 

Marko Kuisma, Chief Commercial Officer at Kaiku Health, then presented a new digital platform for better patient monitoring, using machine learning tools.

Marko Kuisma on digital tools for better patient monitoring.

Marko Kuisma on digital tools for better patient monitoring.

Scientific evidence demonstrates that patients who use a digital symptom monitoring solution have an overall survival benefit, experience improved quality of life and go through less visits to the emergency room and hospitalisations.

“The traditional interventions that clinicians make are reactive and come with a delay,” Kuisma explained. “With digital symptom monitoring, interventions are still reactive, but more timely, because you can detect the symptoms early on. When applying machine learning, we make that monitoring proactive and predictive, taking action before symptoms and adverse effects develop.”

“… taking action before symptoms and adverse effects develop.”

 

Identifying gene mutations

Jørn Skibsted Jakobsen Md. Ph.D.,Vice president Science and Medicine TA Urology/Uro-Oncology, Global Clinical Research and Development, Ferring Pharmaceuticals, introduced emerging gene therapies to treat non muscle invasive bladder cancer (NMIBC) bladder cancer.

Jørn Skibsted Jakobsen on a radical new gene therapy.

Jørn Skibsted Jakobsen on a radical new gene therapy.

If a NMIBIC patient doesn’t respond to BCG (a type of immunotherapy drug), a cystectomy is still considered the gold standard treatment. This involves surgically removing all or parts of the urinary bladder, creation of a urinary diversion using a piece of the small intestine and leads to a significantly decreased quality of life for the patient.

Jakobsen introduced a new gene therapy to treat NMIBC patients that are unresponsive to BCG treatment.

“Early research suggests mutations in the surrounding tissue of the tumour potentially predict the subsequent recurrence of the disease,” Jakobsen said. “What if we were able to identify those mutations? And then create a personalised gene-based antibody directed at identified mutations. You could potentially treat patients before the recurring disease.”

“You could potentially treat patients before the recurring disease …”

 

Novel targets and pathways

Carl Borrebaeck, Professor, Lund University, and Kristian Pietras, Professor of Molecular Medicine, Lund University presented L2CancerBridge, a collaboration between the Swiss Centre of Lausanne and Lund University. They are exploring a new model for translational research in breast cancer and tumour immunology.

Carl Borrebaeck introduced L2CancerBridge.

Carl Borrebaeck introduced L2CancerBridge.

The tumor immunology team in Lausanne is focused on identifying novel targets on immunoregulatory cells as T cells and dendritic cells, with the goal of identifying new targets for CAR-T cells. The breast cancer team is focused on studies of tumour cells and their microenvironment with the goal to identify signalling pathways.

“We have been able to find signalling pathways between malignant cells and connective tissue,” Pietras said.

These pathways are crucial for basal-like breast cancer, the most aggressive breast cancer subtype, and block the development of resistance to endocrine therapy. Blocking them allows the use of effective endocrine therapies in cancers that previously did not have any targeted treatment options.

 

Gaspar Taroncher-Oldenburg, PhD; Editor-at-Large, Nature Publishing Group, moderated the session for the second year in a row.

“I have been impressed by how much thought both co-hosts of the event—Jutta Heix from the Oslo Cancer Cluster and Carl Borrebaeck from Lund University—put into weaving together a compelling story that is timely and relevant, both locally and globally.” Taroncher-Oldenburg said.

“Of course, much of the credit for the session being successful goes to the panelists, who again this year captured the audience’s attention through a combination of intriguing presentations and a dynamic roundtable discussion that broadly illustrated different aspects–present and future—of precision medicine in oncology.”

“A compelling story that is timely and relevant, both locally and globally.”

The Norway for life science stand at NLS days 2019.

Norway for life science

The biggest key players from the life science industry in Norway came together in Malmö with a common goal: to promote Norwegian life science and build Nordic collaboration.

The life science industry in Norway is booming and collaboration across Nordic borders is of increasing importance. That is why Oslo Cancer Cluster arranged the stand “Norway for Life Science” this year at the Nordic Life Science Days in Malmö.

Among the participants of the stand were governmental institutions, cluster organisations, private companies and academic institutions.

 

Promoting collaboration

On Wednesday, a delegation from the Norwegian Embassy in Sweden attended for an informal meet and greet with the Norwegian life science milieu. This was an excellent opportunity to share knowledge about Nordic cooperation and to strengthen joint activities within the life sciences.

See the video with Kirsten Hammelbo, Minister / Deputy Head of Mission, Norwegian Embassy below.

 

Standing together

The participants of the stand were altogether positive about the initiative and agreed it was a constructive platform to build new relationships. We asked some of the participants the same question: Why is it important for you to be here at NLS days?

“Our main focus here at NLS Days is Nordic collaboration, both public and private, to promote the life science industry.”
Catherine Capdeville, Senior Adviser, Innovation Norway

“It is important to follow what is happening in the industry and in other innovation environments. We are here to nurture our existing contacts and find new partners.”
Morten Egeberg, Administrative leader, UiO Life Science

“Firstly, it is important to show that Norway stands together. This is a significant meeting place. We consider the Nordic countries to be our home market, so we try to present what we do here. It is important for one actor to take responsibility, like Oslo Cancer Cluster does, so that we can collectively gather here.”
Anita Moe Larsen, Head of Communication, Norway Health Tech

“In the long term, we have research projects where we are looking for contacts in the life science industry – both partners of collaboration and potential clients. We are here to promote the centre and let everyone know that we exist.”
Alexandra Patriksson, Senior Adviser, Centre for Digital Life

“We are here to strengthen our collaboration with the best research environments in neuroscience. We want to show that the health industry in Norway is growing and what we can do when we stand together.”
Bjarte Reve, CEO, Nansen Neuroscience Network

“We are happy to contribute to make Norwegian life sciences visible and to show what Norway can offer as a host country, and attract potential investors and collaborating partners in research and innovation. And especially to make visible and be a part of the Norwegian community in this field. It is unusual in Norway that so many different players, both public and private, stand together in one stand – with one common goal.”
Espen Snipstad, Communications Manager, LMI

 

Full list of partners:

 

Sign up to OCC monthly newsletter

Geir Harstad, CEO of Smartfish,

Smartfish with clinical study results

A new clinical study indicates that medical nutrition can improve overall survival in lung cancer patients. 

Oslo Cancer Cluster member Smartfish AS presented the results from a randomized, double-blinded, placebo-controlled trial in the beginning of September. It evaluated one of the company’s medical nutrition products in patients with non-small-cell lung cancer (the most common type of lung cancer) suffering from cachexia.


Cachexia is a complex wasting syndrome, known to have a negative impact on clinical outcomes in patients with cancer and several other chronic diseases.


It is characterised by an ongoing loss of muscle and weight, that eventually can kill the patient.


The results show that the nutrition has a favorable safety profile and indicate a number of positive effects on clinical outcome, for instance that the patients who received the nutrition experienced numerically fewer adverse events from their chemotherapy treatments than the comparator group.

The clinical study

In the pilot study, lung cancer patients who received the nutrition while being pre-cachectic had a statistically significant higher survival after 12 months from baseline compared to the comparator group. 56 patients from 16 clinical sites in Sweden, Italy, Slovakia and Croatia were randomized to receive either Smartfish’s medical nutrition product or a milk-based isocaloric drink.

“This study shows the potential of Remune as an important enhancer of standard cancer care and clinical data like this helps to build awareness of what targeted medical nutrition can do for patients. We are encouraged to continue our research and development to ensure that the best possible nutrition is delivered to the patients who need it.” Geir Harstad, CEO of Smartfish

The medical nutrition product that was tested is called Remune, and is a juice-based drink produced with a proprietary emulsion technology containing unique high levels of Omega 3 fatty acids, vitamin D and whey protein.

The study was recently published online in the journal Nutrition and Cancer and can be read following this link: “Safety and Tolerability of Targeted Medical Nutrition for Cachexia in Non-Small-Cell Lung Cancer: A Randomized, Double-Blind, Controlled Pilot Trial” .

About Smartfish AS

Smartfish AS is active in the research, development, production and marketing of advanced and clinically documented nutritional drinks within medical nutrition and sports nutrition. All Smartfish products are produced on its proprietary juice-based emulsion technology platform with the marine DHA and EPA fatty acids as important ingredients. Smartfish has a number of ongoing clinical development projects and studies in close collaboration with researchers and institutions both in Norway and internationally. The company was founded in 2001 and is located in Oslo, Norway and Lund, Sweden. Smartfish’s main shareholders are Investinor (Norway) and Industrifonden (Sweden). For more information, visit SmartFish official website.

For more information about the study and the company, please contact Jens Nordahl, VP Sales & Marketing, tel +47 996 299 99.

The company’s press release can be read as a PDF in this link.

 

Sign up to OCC monthly newsletter

Debate from Arendalsuka

Together for precision medicine

During Arendalsuka 2019, we arranged a breakfast meeting on the development of cancer treatments of the future, together with LMI and Kreftforeningen.

Arendalsuka has become an important arena for those who want to improve aspects of Norwegian society. We were there this year to meet key players to accelerate the development of cancer treatments.

Our main event of the week was a collaboration with Legemiddelindustrien (LMI) and The Norwegian Cancer Society (Kreftforeningen). We wanted to highlight the cancer treatments of the future and whether Norway is equipped to keep up with the rapid developments in precision medicine. (Read a summary of the event in Norwegian on LMI’s website)

First speaker, Line Walen (LMI), presented the problems with the traditional system for approving new treatments in face of precision medicine.

The second presenter, Kjetil Taskén (Oslo University Hospital), introduced their new plan at Oslo University Hospital to implement precision medicine.

Then, Steinar Aamdal (University of Oslo) talked about what we can learn from Denmark when implementing precision medicine.

Lastly, Ole Aleksander Opdalshei (Norwegian Cancer Society) highlighted a new proposal for legislation from the government.

The exciting program was followed by a lively discussion between both politicians and cancer experts.

There was general agreement in the panel that developments are not happening fast enough and that the Norwegian health infrastructure and system for approving new treatments is not prepared to handle precision medicine, even though cancer patients need it immediately.

The panelists proposed some possible solutions:

  • Better collaboration and public-private partnerships between the health industry and the public health sector.
  • More resources to improve the infrastructure for clinical trials, with both staff, equipment and financial incentives.
  • Better use of the Norwegian health data registries.

After the debate, we interviewed a few of the participants and attendees. We asked: which concrete measures are needed for Norway to get going with precision medicine?

Watch the six-minute video below (in Norwegian) to find out what they said. (Turn up the sound)

 

Did you miss the meeting? View the whole video below on YouTube (in Norwegian).

 

Full list of participants:

  • Wenche Gerhardsen, Head of Communications, Oslo Cancer Cluster (Moderator)
  • Line Walen, Senior Adviser, LMI
  • Kjetil Taskén, director Institute for Cancer Research, Oslo University Hospital
  • Steinar Aamdal, professor emeritus, University of Oslo
  • Ole Aleksander Opdalshei, assisting general secretary, The Norwegian Cancer Society
  • Marianne Synnes (H), politician
  • Geir Jørgen Bekkevold (KrF), politician
  • Tuva Moflag (Ap), politician
  • Per Morten Sandset, vice principal for Innovation, University of Oslo
  • Audun Hågå, Director Norwegian Medicines Agency

 

Thank you to all participants and attendees!

The next event in this meeting series will take place in Oslo in the beginning of next year. More information will be posted closer to the event.

We hope to see you again!

 

Organisers:

 

 

 

 

 

Sponsors:

 

 

 

 

 

Sune Justesen and Stephan Thorgrimsen from Immunitrack

New tool to improve cancer vaccines receives funding

Oslo Cancer Cluster member Immunitrack has been awarded a grant from Eurostars to develop their prediction tool for cancer vaccines.

Immunitrack is a biotech company that develops software, which predicts immune responses and assesses new cancer vaccines.

Developing a new vaccine can be a lengthy and expensive process, with a high risk of failure. One key to success is being able to predict how the patient’s immune system will react, so drug developers can bring forth therapies that mobilize the immune system to fight the disease. Immunitrack’s tools can help developers predict the impact of a new drug on the patient’s immune system, before entering clinical trials.

Eurostars supports international innovative projects and is co-funded by Eureka member countries and the European Union Horizon 2020 framework programme. The funding will be used by Immunitrack over a 24-month period for the ImmuScreen Project, to develop a new prediction tool. It will both improve how cancer vaccines work and how to track patients’ immune responses.

“This Eurostar project will give additional momentum to the ongoing development of a best in class neo-epitope prediction tool, PrDx TM, by Immunitrack,” says Sune Justesen, CSO at Immunitrack.

Immunitrack will receive a total of approximately €750 000 from Eurostars, together with the Centre for Cancer Immune Therapy (CCIT), based in Herley, Denmark. CCIT aims to bridge the gap between research discovery and clinical implementation of treatments in the field of cancer immunotherapy.

“The collaboration with the Danish Cancer Center for Immune Therapy, is certainly an important step in validating and implementing PrDx, in the immune therapy treatment of cancer patients,” says Sune Justesen, CSO at Immunitrack.

Immunitrack will handle the software development, while CCIT performs the in vitro validation. The clinical validation will be carried out in melanoma patients. The results will help to characterize immune responses and help to understand why some tumours are immune to novel cancer vaccines.

 

Sign up to OCC monthly newsletter

Dr. Richard Stratford and Dr. Trevor Clancy, founders of OncoImmunity

Norwegian AI-based cancer research gets a boost

The Japanese tech giant NEC Corporation has acquired OncoImmunity AS, a Norwegian bioinformatics company that develops machine learning software to fight cancer.

This week, Oslo Cancer Cluster member OncoImmunity AS was bought by the Japanese IT and network company NEC Corporation. The company is now a subsidiary of NEC and operates under the name of NEC OncoImmunity AS. NEC has recently launched an artificial intelligence driven drug discovery business and stated in a press release that NEC OncoImmunity AS will be integral in developing NEC’s immunotherapy pipeline.

 

AI meets precision medicine

One of the great challenges when treating cancer today is to identify the right treatment for the right patient. Each cancer tumour is unique, and every patient has their own biological markers. So, how can doctors predict which therapy will work on which patient?

NEC OncoImmunity AS develops software to identify neoantigen targets for truly personalized cancer vaccines, cell therapies and optimal patient selection for cancer immunotherapy clinical trials. Neoantigen targets are parts of a protein that are unique to a patient’s specific tumor, and can be presented by the tumor to trigger the patient’s immune system to attack and potentially eradicate the tumor.

“The exciting field of personalized medicine is moving fast and becoming increasingly competitive. The synergy with NEC Corporation will allow us to make our technology even more accurate and competitive, as we can leverage NEC’s expertise in AI and software development and enable OI to deploy our technology on scale in the clinic due to their expertise in networks and cyber security,” said Dr. Trevor Clancy, Chief Scientific Officer and Co-founder.

“This acquisition gives us the opportunity to be a world leading player in this field and serve our Norwegian and international clients with improved and secure prediction technology in the medium to long term,” said Dr. Richard Stratford, Chief Executive Officer and Co-founder.

 

The rise to success

OncoImmunity was founded in 2014 and has been a member of Oslo Cancer Cluster since the early days of the start up. The co-founders Dr. Trevor Clancy and Dr. Richard Stratford said the cluster has been instrumental to their success and thanks the team for their advice and support from the very beginning of their journey:

“It is crucial with a technology like ours that we interact with commercial companies active in drug development, research, clinical projects, investors and other partners. Oslo Cancer Cluster is the perfect ecosystem in that regard as it provides the company with the networking and partnering opportunities that in effect support our science, technological and commercial developments.”

Mr. Anders Tuv, Investment Director of Radforsk, has been responsible for managing the sales process in relation to the Japanese group NEC Corporation on behalf of the shareholders. The shareholders are happy with the transaction and the value creation that was realised through it. Mr. Tuv commented:

“It is a huge recognition that such a global player as NEC sees the value of the product and expertise that have been developed in OncoImmunity AS and buys the company to strengthen their own investments in and development of AI-driven cancer treatment. It is also a recognition of what Norway is achieving in the field of cancer research, and it shows that Radforsk has what it takes to develop early-phase companies into significant global positions within the digital/AI-driven part of the industry. We believe that NEC will be a good owner going forward, and we wish the enterprise the very best in its future development.”

 

Medicine is becoming digital

NEC OncoImmunity AS is now positioned to become a front runner in the design of personalized immunotherapy driven by artificial intelligence. Dr. Trevor Clancy said that NEC and OncoImmunity share the common vision that medicine is becoming increasingly digital and that AI will play a key role in shaping future drug development:

“Both organizations believe strongly that personalized cancer immunotherapy will bring curative power to cancer patients, and this commitment from NEC is highlighted by the recent launch of their drug discovery business. The acquisition now means that both companies can execute on their vision and be a powerful force internationally to deliver true personalized medicine driven by AI.”

 

For more information, please visit the official websites of NEC Corporations and NEC OncoImmunity AS 

 

Sign up to OCC newsletter

Two women working on two laptops and smiling.

Cross-border courses in the Nordics

Oslo Cancer Cluster Incubator collaborates with partners in Sweden, Norway and Finland to help life science professionals learn from their neighbours.

“Life science is a global business and cross-border collaboration is important, in particular for small countries in the Nordics” says Bjørn Klem, manager at Oslo Cancer Cluster Incubator.

Bjørn Klem, manager of Oslo Cancer Cluster Incubator.

Bjørn Klem, manager of Oslo Cancer Cluster Incubator.

Together with partners from three different professional sectors in three countries, Oslo Cancer Cluster Incubator recently received €75,000 in project funding over two years from the Nordplus Programme.

Digital competences

Nordplus is the Nordic Council of Ministers’ most important programme in the area of lifelong learning. On its webpage, Nordplus writes that more than 10,000 people in the Nordic and Baltic region benefit from the programme every year.

In 2019 and 2020, Nordplus welcomes applications on digital competences and computational thinking.

Innovation and competition

Bjørn Klem hopes that the project will benefit both Nordic innovation and competition.

“The outcome of this project should be to share educational resources to increase competence in the Nordic innovation environments. This will make innovation in life science more competitive in the global market.” Bjørn Klem

The Association of the Pharmaceutical Industry in Norway (LMI), one of the five partners in the project, also stresses the importance of Nordic collaboration for the life science industry. Marie Svendsen Aase, project coordinator LMI, puts it this way: 

“We see Nordic cooperation as an essential value to the medical development that is now taking place with both personalised medicine and building a life science industry across the Nordic countries.”

Learning across the region

The project will make continuous learning for life science professionals, specifically in pharmaceuticals and medical devices, easier by facilitating courses and material digitally. At the same time, the project aims to adapt national courses to a Nordic and Baltic audience.  

A course plan will be made in 2019.

The five partners in the project are:

  • Swedish Academy of Pharmaceutical Sciences
  • Swedish Pharmaceutical Industry Association
  • Pharmaceutical Information Centre in Finland
  • The Association of the Pharmaceutical Industry in Norway (LMI)
  • Oslo Cancer Cluster Incubator

Meet our new members

Oslo Cancer Cluster proudly presents the new members that have joined our organisation during the second quarter of 2019.

The new members represent a valuable addition to our non-profit member organisation, which encompasses the whole oncology value chain. By being a part of Oslo Cancer Cluster, our members are connected to a global network with many relevant key players in the cancer research field. Our members contribute to this unique ecosystem and ensure the development of innovative cancer treatments to improve patients’ lives.

 

theradex logo

 

Theradex Oncology

Theradex Oncology provides global clinical development services exclusively to companies developing new cancer treatments. The company has a strong emphasis on early drug development. It provides regulatory and medical support for companies taking cancer treatments into clinical development in the US and Europe.

Theradex Oncology staff has participated in educational events at Oslo Cancer Cluster for a number of years. This is how they became familiar with the cluster.

“Oslo Cancer Cluster provides a unique opportunity to share knowledge with other professionals dedicated to developing new cancer treatments.” Meg Valnoski, President Theradex Oncology

Meg Valnoski explains how the company has been supporting the development of cancer treatments for over 30 years and experienced the advancements in cancer treatments over that time.

 “We are always working to expand our knowledge and experience in cancer drug development to support our partnerships with companies developing new therapies for cancer treatment.”

Catapult life science logo

Catapult Life Science

Catapult Life Science is a centre established to bridge the gap between the lab and the industry, providing infrastructure, equipment and expertise for product development and industrialisation in Norway. It has been formed as a result of joint efforts from a range of different players with a common goal of enabling more industrialisation of life science research in Norway, truly what the Norwegians call a dugnad.

“We see Oslo Cancer Cluster as a key partner for realising our purpose, which is to create new opportunities for product development and industrialisation in Norway.” Astrid Hilde Myrset, CEO Catapult Life Science

Myrset adds:

“Our vision is ‘Bringing science to life’, which implies enabling new ideas to a be developed in Norway for new employment in the pharma industry, new growth in the Norwegian economy, and last but not least, new products to the market, enabling a longer and healthier life for patients.”

 

This post is part of a series of articles, which will introduce the new members of our organisation every three months.

  • To find out who else is involved in Oslo Cancer Cluster, view the full list of members
  • Follow us on Facebook or subscribe to our newsletter to always stay up to date!

 

Sign up to OCC monthly newsletter!

Three new board members of Oslo Cancer Cluster: Per Morten Sandset, Gunhild M. Maelandsmo and Cathrine Lofthus

New board members

We are happy to welcome three new members to the board of Oslo Cancer Cluster. Find out what they had to say about entering their new positions.

Per Morten Sandset

Per Morten Sandset

Per Morten Sandset is a Senior Consultant in hematology at the Oslo University Hospital and a professor in thrombosis research at the University of Oslo. He has previously been head of the Department of Hematology and Deputy Director of the Medical Division at Ullevål University Hospital and Director of Research, Innovation and Education of the southeastern Norway Health Region. He is currently Vice-Rector at the University of Oslo with responsibilities for research and innovation including the life sciences activities of the university. Sandset has published more than 315 original publications and supervised 30 PhD students.

Why did you join the board of Oslo Cancer Cluster?

“There are currently strong political expectations that the many scientific achievements in the life sciences can be utilized, commercialized and eventually form the basis for new industry.”

“Oslo Cancer Cluster has matured to become a major player of the research  and innovation ecosystem within the life science area in Oslo and also on a national level. This is why being on the board is so interesting and important.”

What do you hope to achieve in your new role?

“As a OCC board member, I want to strengthen and develop the collaboration across the sectors, i.e., between the hospitals and the university – and between academia and industry. On a larger scale, it is about establishing a regional ecosystem that take achievements of the basic sciences into the development of enterprises. Oslo Cancer Cluster should maintain its role as the major player in the cancer area.”

Gunhild M. Mælandsmo

Gunhild Mari Mælandsmo

Gunhild M. Mælandsmo is the head of Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital where she also is heading the “Metastasis Biology and Experimental Therapeutics” research group. She is a Professor at Faculty of Health Sciences, University of Tromsø.

Why did you join the board of Oslo Cancer Cluster?

“I think the concept of Oslo Cancer Cluster is very interesting, fostering a close collaboration between academia, health care providers and the health industry. 

“Focusing on translational research for many years, I think I can contribute in the board with valuable experience in several parts of the value chain; from basic science, from translational aspects and from my close collaboration with clinical partners as well as administrative experience.”

What do you hope to achieve in your new role?

“I hope I can contribute with valuable knowledge – both from cancer research and from my administrative experience from Oslo University Hospital. I also hope to see more products from small Norwegian companies reaching clinical testing and expanding the biotech industry. Finally, I hope to see the Norwegian health care system more active in providing precision cancer medicine (and to utilise the advantages we have when it comes to registries etc).”

Cathrine M. Lofthus

Cathrine M. Lofthus

Cathrine M. Lofthus is the CEO at the Norwegian South East Regional Health Authority (Helse Sør-Øst RHF). She has previously held several leading positions at Aker University Hospital and at Oslo University Hospital. Lofthus is a qualified doctor from the University of Oslo, where she also completed a PhD in endocrinology. She also holds qualifications in economy, administration and leadership, and has experience from the health sector as a clinician, researcher and leader. Lofthus also holds directorships in Norsk helsenett and KLP, in addition to being a member of the board of National e-Health.

 

We also wish to extend a special thank you to our previous board members:

  • Kirsten Haugland, Head of the Research and Prevention Department at the Norwegian Cancer Society.
  • Inger Sandlie, professor at the Department of Biosciences, University of Oslo and research group leader at the Department of Immunology, Oslo University Hospital.
  • Øyvind Bruland, professor of clinical oncology at the University of Oslo and consultant oncologist at The Norwegian Radium Hospital, Oslo University Hospital.
The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

SINTEF to develop methods in immuno-oncology

SINTEF and Catapult Life Science are looking for new partners to develop methodology for cancer immunotherapy.

“We want to develop methods within immunotherapy, because this is currently the most successful strategy for improving cancer treatments and one of the main directions in modern medicine,” says Einar Sulheim, Research Scientist at SINTEF.

The Norwegian research organization SINTEF is an Oslo Cancer Cluster member with extensive knowledge in characterisation, analysis, drug discovery and development of conventional drugs.

The new project on methodology for cancer immunotherapy recently started in April 2019 and is a collaboration with Catapult Life Science, a new Oslo Cancer Cluster member. The aim is to help academic groups and companies develop their immunotherapy drug candidates and ideas.

Help cancer patients

Ultimately, the main aim is of course that the project will benefit cancer patients. Immunotherapy has shown to both increase life expectancy and create long term survivors in patient groups with very poor prognosis.

“We hope that this project can help streamline the development and production of immunotherapeutic drugs and help cancer patients by helping drug candidates through the stages before clinical trials.” Einar Sulheim, Research Scientist at SINTEF

 

Develop methodology

The project is a SINTEF initiative spending NOK 12,5 million from 2019 to 2023. SINTEF wants to develop methodology and adapt technology in high throughput screening to help develop products for cancer immunotherapy. This will include in vitro high throughput screening of drug effect in both primary cells and cell lines, animal models, pathology, and production of therapeutic cells and antibodies.

 

High throughput screening is the use of robotic liquid handling systems (automatic pipettes) to perform experiments. This makes it possible not only to handle small volumes and sample sizes with precision, but also to run wide screens with thousands of wells where drug combinations and concentrations can be tested in a variety of cells.

 

The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

 

Bridging the gap

Catapult Life Science is a centre established to bridge the gap between the lab and the industry by providing infrastructure, equipment and expertise for product development and industrialisation in Norway. Their aim is to stimulate growth in the Norwegian economy by enabling a profitable health industry.

“In this project, our role will be to assess the industrial relevance of the new technologies developed, for instance by evaluating analytical methods used for various phases of drug development.” Astrid Hilde Myrset, CEO Catapult Life Science

A new product could for example be produced for testing in clinical studies according to regulatory requirements at Catapult, once the centre achieves its manufacturing license next year.

“If a new method is intended for use in quality control of a new regulatory drug, Catapult’s role can be to validate the method according to the regulatory requirements” Myrset adds. 

SINTEF and Catapult Life Science are now looking for partners.

Looking for new partners

Einar Sulheim sums up the ideal partners for this project:

“We are interested in partners developing cancer immunotherapies that see challenges in their experimental setups in terms of magnitude, standardization or facilities. Through this project, SINTEF can contribute with internal funding to develop methods that suit their purpose.”

 

Interested in this project?

Tor takes a mouthswab before in order to profile his DNA.

DNA profiling on the syllabus

Students learned about a Norwegian invention behind CAR T-cell therapy and DNA profiling on their latest work placement.

This article is also available in Norwegian here.

Thermo Fisher Scientific is a global company that develops the Norwegian technology, which is based on “Ugelstad-kulene” (The Ugelstad Beads). In June 2019, Einar, Tor, Olav and Philip from Ullern Upper Secondary School completed a work placement with Thermo Fisher Scientific in Oslo. They used the beads to profile their own DNA and learned how the beads can be used to find murderers, diagnose heart attacks and save children from cancer.

“What do you plan to study when you finish upper secondary school?” Marie asks.

“The natural sciences,” Einar and Tor replies.

“The natural sciences at NTNU,” Olav says.

“First, the natural sciences and then, join the Air Force,” Philip answers.

Marie Bosnes is supervising the students who are attending the work placement and has worked more than 24 years in the Norwegian section of Thermo Fisher Scientific. She conducts research and development in the former monastery located on Montebello, next to Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School.

Today, Marie and several of her co-workers have taken time out of their busy schedules to tutor the four students from Ullern: Einar Johannes Rye, Tor Haugen, Olav Bekken and Philip Horn Børge-Ask. The students have nearly finished their second year and have so far focused their studies on mathematics, physics, chemistry and biology. But next year, they will also study programming, instead of biology.

“It is a good mix of subjects, especially programming is useful to learn. You should consider studying bioinformatics, because, in the future, it will be a very desirable qualification,” Marie says.

Marie has studied biology and her co-workers call her Reodor Felgen (a character from a famous Norwegian children’s comic book), since she loves to constantly explore research on new topics.

Treating cancer

An ullern student is looking at the dynabeads in a test tube.

Philip Horn Børge-Ask looks at the test tubes that contain the famous “Ugelstad-kulene”. Photo: Elisabeth Kirkeng Andersen

While Einar, Tor, Olav and Philip are on a work placement with Marie, four other Ullern students are on another work placement with Thermo Fisher Scientific in Lillestrøm. This is where they develop and produce Dynabeads for the global market.

“Dynabeads are also kalled ‘Ugelstad-kulene’, because they are a Norwegian invention. During the ‘1970s, one of NASA’s goals was to make perfectly round and identical, tiny, plastic microbeads in outer space. No one thought it was possible to make them on Earth. John Ugelstad, a Norwegian chemical engineer, did not accept that fact. He completed several difficult calculations, which enabled him to produce these tiny beads on Earth,” Marie explains.

Thanks to the tiny beads, Thermo Fisher Scientific has experienced huge global success. Even though there are only 200 employees situated in Norway (out of 70 000 employees globally), the research and development conducted in Norway is extremely important for the whole company.

“We are proud to announce that every year Dynabeads are used in almost 5 billion diagnostic tests in the world,” Marie says.

Thermo Fisher Scientific has developed the beads further, so they can be used in CAR T-cell therapy to treat cancer. The first approved CAR T-cell therapy in the world that treats child leukaemia was approved in Norway in December 2018. The advanced technology is based on the Norwegian invention “Ugelstad-kulene”.

  • Watch the video from the Norwegian TV channel TV2 about Emily Whitehead, the first child in the world that received this CAR T-cell therapy. She visited Thermo Fisher Scientific in Oslo in March 2019.

Catching killers

Elisabeth and Mary are supervising the students in the lab

Elisabeth Breivold and Marie Bosness from Thermo Fisher Scientific supervised the students in the lab. Photo: Elisabeth Kirkeng Andersen

“The beads are used for many different purposes and you will learn about a few of them today. Simply put, the beads are like a fishing rod. Depending on which bait you fix to it, the rod can be used in different ways,” Marie says. “Before lunch, we will use Dynabeads for DNA profiling. This technology is commonly used by police to identify suspects after a crime, just like in the TV series CSI.”

During the presentation, Marie shows the students the front page of an American newspaper with a mugshot of Gary Ridgway, an American serial killer, also known as “The Green River Killer”. Ridgway has now confessed to killing 71 women. For many years, the police hunted the murderer without any luck. Finally, new technology enabled the police to retrieve damning evidence from the tiny amounts of DNA that Ridgway had left on his victims. The DNA evidence led to a successful conviction of the killer.

“The DNA evidence was established with DNA profiling, using Thermo Fisher Scientific’s products. They did not use Dynabeads back then, but today, they would have used the beads. You will learn how to do it yourselves in the lab,” Marie says.

Learning to profile DNA

Olav takes the mouth swab

Olav performs a mouth swab on himself, the first step to retrieve the DNA. Photo: Elisabeth Kirkeng Andersen

Before the students enter the laboratory, they need to put on protective glasses, lab coats and plastic shoe covers. The students will profile their own DNA, the same way the police profile the DNA from suspects or criminals.

First, the Ullern students collect the cells with a mouth swab. Then, they add the different enzymes and chemicals that will open the cell membranes into the test tube, so that the DNA is released.

Afterwards, the Ullern students add “Ugelstad-kulene”, which bind to the DNA like magnets. Then, they retrieve their DNA from the solution.

They put the DNA in a kind of “photocopier”, in order to study it with something called “gel electrophoresis”. This is a method for analysing individual parts of DNA that make up the human genome. It shows a bar code pattern, which is completely unique for every person in the world.

Tor is using the pipette in the lab.

Tor adds new chemicals to the solution with his DNA. Photo: Elisabeth Kirkeng Andersen

“DNA is incredibly stable, which means that we can retrieve it from people and animals that died a long time ago and copy their DNA so that it can be analysed,” Marie explains.

“The most fun was to retrieve our own DNA. We tried it ourselves and it was fun to learn how to do it,” Philip says.

The Ullern students were very happy with their work placement at Thermo Fisher Scientific.

“I think the placement was educational and interesting. It was very well arranged and we got to try many different things. What surprised me the most was probably the close collaboration between scientists at Thermo Fisher Scientific – it seemed like everyone knew each other!” Philips says at the end of the day.

After the students had completed the DNA profiling, they ate lunch and then they learned more about the use of “Ugelstad-kulene” in diagnostics, and CAR T-cell therapy.

Elisabeth Breivold supervised the students while they performed the DNA profiling in the laboratory at Thermo Fisher Scientific.

Elisabeth Breivold supervised the students while they performed the DNA profiling in the laboratory at Thermo Fisher Scientific. Photo: Elisabeth Kirkeng Andersen

 

Sign up to OCC newsletter

Dr James Allison, Dr Padmanee Sharma

Nobel Prize winner joins Lytix Biopharma

The Nobel Laureate Dr James Allison and oncologist Dr Padmanee Sharma will become strategic advisors for our member Lytix BioPharma.

Oslo Cancer Cluster’s member Lytix BioPharma announced this week that the cancer researchers and married couple Dr James Allison (PhD) and Dr Padmanee Sharma (MD) will join their Scientific Advisory Board.

Dr James Allison was, together with Dr Tasuku Honjo, awarded the 2018 Nobel Prize in Medicine last December. The renowned cancer researchers received the award for their ground-breaking work in immunology. It has become the basis for different immunotherapies, an area within cancer therapy that aims to activate the patient’s immune system to fight cancer.

Dr Sharma is a distinguished oncologist, who has focused her work on understanding different resistant mechanisms in the immune system. These resistant mechanisms sometimes hinder immunotherapies from working on every cancer tumour and every cancer patient.

Lytix Biopharma is a biotech company, located in the Oslo Cancer Cluster Incubator, that develops novel cancer immunotherapies. They are making an “oncolyctic peptide” – a drug with the potential to personalize every immunotherapy to fit each patient.

  • Please visit Lytix BioPharma’s official website for more information about their product

Edwin Clumper, CEO of Lytix BioPharma, expressed how thrilled he was to welcome Dr Allison and Dr Sharma:

“We are honoured that they have offered their support to further the development of our oncolytic peptides with the aim to tackle tumour heterogeneity – an unresolved challenge in cancer treatment.”

 

Sign up to OCC newsletter

Martin Bonde, CEO Vaccibody.

Dynamic networking and pitch sessions at ICCS 2019

Oslo Cancer Cluster and its international partners organised the International Cancer Cluster Showcase (ICCS) on 3 June in Philadelphia, kickstarting this year’s BIO International Convention.

International Cancer Cluster Showcase 2019

The aim of this annual event is to showcase cutting edge oncology research and development activities performed in start-ups and biotechs from Oslo Cancer Cluster and its international partners from North America and Europe.

This year’s meeting offered a compact program including company presentations, engaging poster sessions and lively networking among representatives of the international oncology community.

Jutta Heix, Head of International Affairs at Oslo Cancer Cluster, and main organizer of the event:

“Building on the first meeting at the Whitehead Institute in Cambridge in 2012, ICCS was established as a successful format to expose and connect emerging oncology companies to executives of the global oncology community attending the BIO International Convention.

“Via collaboration with partners from North American and European innovation hubs, we gather a strong group of exciting new companies and attract more than 200 participants.”

Jan Alfheim, CEO of Oncoinvent, another member of Oslo Cancer Cluster also held a presentation.

Jan Alfheim, CEO of Oncoinvent, another member of Oslo Cancer Cluster also held a presentation.

Among this year’s presenters were our members OncoInvent and Vaccibody. The dynamic pitch session featured 20 companies from 9 countries advancing a variety of innovative oncology technologies and assets in preclinical and clinical development.

“ICCS was a great opportunity to present Vaccibody and our recent progress towards a relevant international audience. It triggered new contacts and stimulated good discussions following the presentation.”
Martin Bonde, CEO of Vaccibody

Commenting on the highlights, Heix said:

“The National Institutes of Health / National Cancer Institute (NCI) participated for the 2nd time. Michael Salgaller, Supervisory Specialist Technology Transfer Center presented the partnering opportunities and benefits the NCI offers to outside parties from academia and industry.

“Our sponsors Precision for Medicine, Takeda Oncology and Boehringer Ingelheim enriched the program by short presentations and active discussions during the humming poster and networking sessions.”

 

The event was sponsored by:

Boehringer Ingelheim logoDNB logoeaec logo

Precision for medicine logo Takeda logo

 

The event was organised by:

Logos of the event organisers

Ultimovacs enter Oslo Stock Exchange

Ultimovacs enters the Oslo Stock Exchange

Oslo Cancer Cluster member Ultimovacs, a Norwegian cancer vaccine company, has raised NOK 370 million and entered the Oslo Stock Exchange on Monday 3 June 2019.

There was a stir of interest among both national and international investors when Ultimovacs announced they will enter the Oslo Stock Exchange. Several interested parties have now become shareholders in the company, totalling approximately 1 500 shareholders.

“It is good for the Norwegian health industry and for Ultimovacs when national and international investors show the company this kind of trust. In today’s uncertain market, it is especially nice with such a large interest, from both international investors and small savers. I look forward to following the company further,” says Jonas Einarsson, Chairman of the Board in Ultimovacs and Managing Director in Radforsk.

The funds that Ultimovacs has raised will go to financing the development of their universal cancer vaccine, UV1. A large clinical study will document the effect of the vaccine. UV1 will be combined with other immunotherapies in patients with malignant melanoma (a type of skin cancer) at around 30 hospitals in Norway, Europe, USA and Australia.

Ultimovacs has already run two successful clinical trials of the vaccine on patients with lung cancer, prostate cancer and malignant melanoma.

“The cancer vaccine has shown promise in the studies we have conducted at the Norwegian Radium Hospital. Based on the results, we have established a development programme to document that our vaccine has effect on cancer patients. I am very happy that we now have entered the Oslo Stock Exchange. It means that the practical conditions are in place to put our development programme into action,” said Øyvind Kongstun Arnesen, Chief Executive Officer in Ultimovacs.

Sign up to OCC newsletter

Emmy and Benedicte learned about research into neuroscience and how to use modern medical technology, such as CRISPR, when on work placement with researcher Marianne Fyhn and her colleagues at the University of Oslo. Photo: Monica Jenstad

Learning about the human brain

Oslo Cancer Cluster and Ullern Upper Secondary School arranged a work placement for students to learn about neuroscience at the University of Oslo.

Four biology students from Ullern Upper Secondary School spent two great days on work placement with some of the world’s best neuroscientists at the University of Oslo. In Marianne Fyhn’s research group, the students tried training rats and learned how research on rats can provide valuable knowledge about the human brain.

The Ullern students, Benedicte Berggrav, Lina Babusiaux, Maren Gjerstad Høgden and Emmy Hansteen, first had to dress in green laboratory clothes, hairnets and gloves. They also had to leave their phones and notepads behind, before enterring the animal laboratory where Marianne Fyhn and her colleagues work. Finally, they had to walk through an air lock that blew the last remnants of dust and pollution off them.

On the other side was the most sacred place for researchers: the newly refurbished animal laboratory. It is in the basement of Kristine Bonnevies Hus on the University of Oslo campus. We used to call it “Bio-bygget” (“the bio-building”) when I studied here during the ‘1990s.

 

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

It is the second day of the students’ work placement with Marianne. The four biology students, who normally attend the second year of Ullern Upper Secondary School, have started to get used to their new, temporary jobs. They are standing in one of the laboratories and looking at master student Dejana Mitrovic as she is operating thin electrodes onto the brain of a sedated rat. PhD student Malin Benum Røe is standing behind Dejana, watching intently, giving guidance and a helping hand if needed.

“We do this so we can study the brain cells. We will also find out if we can guide the brain cells with weak electrical impulses. This is basic scientific research. In the long term, the knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm,” Marianne explained.

“The knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm.”

Dejana needs to be extremely precise when she connects the electrodes onto the rat’s brain. This is precision work and every micrometre makes a difference.

 

Training rats

The previous day, Maren, Benedicte, Lina and Emmy helped to train the rat on the operating table on a running course. Today, the Ullern students will train the other rats that haven’t had electrodes surgically connected to their brains yet.

“We will train the rats to walk in figures of eight, first in one direction and then the other”, the students explained to me.

We remain standing in the rat training room for a while, talk with Dejana and train some of the rats. Dejana tells me that the rats don’t have any names. After all, they are not pets, but they are cared for and looked after in all ways imaginable.

“It is very important that they are happy and don’t get stressed. Otherwise, they won’t perform the tasks we train them to do,” says Dejana. She and the other researchers know the animals well and know to look for any signs that may indicate that the rats aren’t feeling well.

“It is very important that they are happy and don’t get stressed.”

I ask the students how they feel about using rats for science.

“I think it is completely all right. The rats are doing well and can give us important information about the human brain. It is not okay when rats are used to test make-up and cosmetics, but it is a whole different matter when it concerns important medical research,” says Emmy and the other biology students from Ullern nod in agreement.

 

Understanding the brain

Marianne is the head of the CINPLA centre at the University of Oslo, where Maren, Benedicte, Lina and Emmy are on work placement for two days. Four other Ullern students, Henrik Andreas Elde, Nils William Ormestad Lie, Hans Christian Thagaard and Thale Gartland, are at the same time on a work placement with Mariannes research colleague, Professor of Physics Anders Malthe-Sørenssen. They are learning about methods in physics, mathematics and programming that help researchers to better understand the brain.

“CINPLA is an acronym for Centre for Integrative Neuroplasticity. We try to bring together experimental biology with calculative physics and mathematics to better understand information processing in the brain and the brain’s ability to change itself,” says Marianne.

Physics, mathematics and programming are therefore important parts of the researcher’s work when analysing what is happening in the rat’s brain.

If you think that research on rats’ brain cells sounds familiar, then you are probably right. Edvard and May-Britt Moser in Trondheim received the first Norwegian Nobel Prize in Medicine in 2014. The award was given to them for their discovery of a certain type of brain cells, so called grid cells. The grid cells alert the body to its location and how to find its way from point A to point B.

Marianne did her PhD with Edvard and May-Britt, playing an essential role in the work that led to the discovery of the grid cells. Marianne was therefore very involved in Norway securing its first Nobel Prize in Medicine.

 

The dark room

Another room in the animal section is completely dark. In the middle of the room, there is an enormous box with various equipment. In the centre of the box, there is a little mouse with an implant on its head.

In this test room, there is an advanced microscope. It uses a laser beam to read the brain activity of the mouse as it alternates between running and standing still on a treadmill.

The researcher Kristian Lensjø is back from a longer study break at the renowned Harvard University and will use some of the methods he has learned.

“I will train the mouse so that it understands that for example vertical lines on a screen mean reward and that horizontal lines give no reward. Then I will look at which brain cells are responsible for this type of learning,” says Kristian.

The students stand behind Kristian and watch the mouse and the computer screen. When the testing begins, they must close the microscope off with a curtain so that the mouse is alone in the dark box. Kristian assures us that the mouse is okay and that he can see what the mouse is doing through an infra-red camera.

“This room and the equipment is so new, we are still experiencing some issues with the tech,” says Marianne. But Christian fixes the problem and suddenly we see something on the computer screen that we have never seen before. It is a look into the mouse’s brain while it runs on the treadmill. This means that the researchers can watch the nerve cells as the mouse looks at vertical and horizontal lines, and detect where the brain activity occurs.

 

Research role models

The students from Ullern know they are lucky to see how cutting-edge neuroscience is done in real life. Marianne and her colleagues are far from nobodies in the research world. Bente Prestegård from Oslo Cancer Cluster and Monica Jenstad, the biology teacher at Ullern who coordinates the work placements, made sure to tell the students beforehand.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level. They can see that the people behind the research are nice and just like any normal people. When seeing good role models, it is easier to picture a future in research for oneself,” says Monica.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level.”

Monica and Marianne have known each other since they were master students together at the University of Tromsø almost twenty years ago.

“I know Marianne very well, both privately and professionally. She is passionate about her research and about dissemination and recruitment. She also works hard to create a positive environment for her research group. Therefore, it was natural to ask Marianne to receive the students and it wasn’t difficult to get her to agree,” says Monica.

Back in the first operating room, Dejana and Malin are still operating on the rats. They will spend the entire day doing this. It takes time when the equipment needs to be found and sterilised, the rats need to be sedated and then operated on as precisely as possibly. It is past noon and time for lunch for Marianne, Kristian and the Ullern students on work placement.

Before I leave them outside Niels Henrik Abels Hus at the Oslo University Campus, I take a picture to remember the extra-ordinary work placement. And not least: to store a picture of the memory in my own brain.

 

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

 

Sign up to OCC newsletter

Lab researcher from Nordic Nanovector

A successful first quarter for Nordic Nanovector

Nordic Nanovector raises NOK 225 million in private placements, begins phase II clinical trials in 74 sites in 23 countries and prepares to commercialize the company. These were some of the good news presented in the first quarter 2019 report.

Oslo Cancer Cluster’s member company Nordic Nanovector develops precision medicine against haematological cancers. These are the types of cancers affecting blood, bone marrow and lymph nodes – also known as leukaemia, lymphoma and myeloma. These cancers are notoriously difficult to treat and therefore have a highly unmet medical need.

On the morning of 23 May 2019, the CEO of Nordic Nanovector, Eduardo Bravo, presented some of the successes the company has had during the first quarter of 2019.

“As we advance the clinical development programmes with Betalutin, including PARADIGME, we are also beginning to initiate some of the other pre-commercialisation activities, such as manufacturing, that are crucial to ensure that we can submit our regulatory filing in a timely and efficient manner.”

The company’s highlights from the first quarter included raising approximately NOK 225 million in private placements.

They have also extended their clinical trials, known as the PARADIGME study, which address advanced, recurring follicular lymphoma. They now have phase II clinical trials in over 74 sites in 23 countries.

During the first quarter, Nordic Nanovector has also welcomed a new chairman to the Board of Directors – Jan H. Egberts, M.D. He is also the chairperson of the Board of Directors of Oslo Cancer Cluster member Photocure.

Lastly, Dr Mark Wright has been appointed Head of Manufacturing to lead the production of Nordic Nanovector’s therapies. This prepares Nordic Nanovector for future commercialisation and will hopefully lead to more precise treatments successfully reaching cancer patients.

 

KUR programming event for teachers to learn to teach programming.

Introducing programming to the curriculum

Programming is not only for computer hackers, it can also help teachers to engage their students in science subjects and inspire start ups to discover new cancer treatments.

 

Almost 60 teachers working in upper secondary schools in Oslo visited Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School one evening in the end of March. The topic for the event was programming and how to introduce programming to the science subjects in school.

“The government has decided that programming should be implemented in schools, but in that case the teachers first have to know how to program, how to teach programming and, not least, how to make use of programming in a relevant way in their own subjects.”

This was how Cathrine Wahlström Tellefsen opened her lecture. She is the Head of Profag at the University of Oslo, a competence centre for teaching science and technology subjects. For nearly one hour, she talked to the almost 60 teachers who teach Biology, Mathematics, Chemistry, Technology, Science Research Theory and Physics about how to use programming in their teaching.

 

What is KUR? KUR is a collaborative project between Oslo Cancer Cluster, Ullern Upper Secondary School and other schools in Oslo and Akershus. It aims to develop the skills and competence of science teachers. Every six months, KUR arranges a meeting where current topics are discussed.

 

Programming and coding

“Don’t forget that programming is much more than just coding. Computers are changing the rules of the game and we have gained a much larger mathematical toolbox, which gives us the opportunity to analyse large data sets,” Tellefsen explained.

Only a couple of years ago, she wasn’t very interested in programming herself, but after pressures from higher up in her organisation, she gave it a shot. She has since then experienced how programming can be used in her own subject.

“I have been a Physics teacher for many years in an upper secondary school in Akershus, so I know how it is,” she said to calm the audience a little. Her excitement over the opportunities programming provides seemed to rub off on some of the people in the room.

“In biology, for example, programming can be used to teach animal population growth. The students understand more of the logic behind the use of mathematical formulas and how an increase in the carrying capacity of a biological species can change the size of its population dramatically. My experience is that the students start playing around with the numbers really quickly and get a better understanding of the relationships,” said Tellefsen.

When it was time for a little break, many teachers were eager to try out the calculations and programming themselves.

 

Artificial intelligence in cancer treatments

Before the teachers tried programming, Marius Eidsaa from the start up OncoImmunity (a member of Oslo Cancer Cluster) gave a talk. He is a former physicist and uses algorithms, programming and artificial intelligence every day in his work.

“OncoImmunity has developed a method that can find new antigens that other companies can use to develop cancer vaccines,” said Eidsaa.

He quickly explained the principals of immunotherapy, a cancer treatment that activates the patient’s own immune system to recognise and kill cancer cells, which had previously remained hidden from the immune system. The neoantigens play a central role in this process.

“Our product is a computer software program called Immuneprofiler. We use patient data and artificial intelligence in order to get a ranking of the antigens that may be relevant for development of personalised cancer vaccines to the individual patient,” said Eidsaa.

Today, OncoImmunity has almost 20 employees of 10 different nationalities and have become CE-marked as the first company in the world in their field. (You can read more about OncoImmunity in this article that we published on 18 December 2018.)

The introductory talk by Eidsaa about using programming in his start up peaked the audience’s interest and the dedicated teachers eagerly asked many questions.

 

Programming in practice

After a short coffee break, the teachers were ready to try programming themselves. I tried programming in Biology, a session that was led by Monica, a teacher at Ullern Upper Secondary School. She is continuing her education in programming now and it turns out she has become very driven.

“Now you will program protein synthesis,” said Monica. We started brainstorming together about what we needed to find out, which parameters we could use in the formula to get the software Python to find proteins for us.

Since my knowledge in biology is a little rusty, it was a slow process. But when Monica showed us the correct solution, it was surprisingly logical and simple. The key is to stay focused and remember to have a cheat sheet right next to you in case you forget something.

 

Sign up to OCC newsletter

How will biobanks accelerate cancer research?

Biobanks ­– the powerful tools in cancer research you may have never heard of.

 

Biobank Norway is a national research infrastructure that comprises all public biobanks in Norway and represents one of the world’s largest existing resources within biobanking. They are also a member of Oslo Cancer Cluster, through NTNU, and represent an exciting initiative in the endeavour to develop precision medicine.

 

A biobank is a storage facility that keeps biological samples to be used for medical research. The samples come from population-based or clinical studies.

 

Christian Jonasson, seniorforsker ved NTNU.

Christian Jonasson, seniorforsker ved NTNU.

Christian Jonasson, the Industry Coordinator for Biobank Norway, connects businesses with Norwegian biobanks to accelerate medical research. He said that more biobanks now work with the health industry and benefit from added value in the process.

“It is the health industry that will ultimately bring new therapies to patients.”
Christian Jonasson

Biobank Norway has developed several strategic areas for Norwegian biobanks. They have built automated freezers for secure long-term storage, with advanced robotised systems that can retrieve barcoded biological samples. They have initiated new biobanks, established new IT systems and also developed policies for public-private collaborations. Also, they have contributed to strategic processes that promote increased utilization of Norwegian health data, including the national Health Data Program.

Ultimately, Biobank Norway aims to facilitate collaborations between the global health industry and Norwegian biobanks to accelerate innovation in the life sciences, disease prevention and treatment.

“Biobanks are one of the most important tools in precision medicine.” Christian Jonasson

 

Biosamples may be used for important, life-saving cancer research. For example, to develop new immunotherapies, such as T cell therapy. Photograph by Christopher Olssøn

Biosamples may be used for important, life-saving cancer research. For example, to develop new immunotherapies, such as T cell therapy. Photograph by Christopher Olssøn

 

A competitive edge

Norway has been collecting biological samples for the last 30-40 years. For example, one of the world’s largest birth cohort studies, the Mother and Child study (called MoBa) was initiated in 1999. It included 100 000 newborns with mother and father, which totalled over 285 000 participants over a ten-year period. There are numerous other Norwegian health studies, which have involved hundreds of thousands of people, such as the HUNT study and the Tromsø study.

Moreover, the Norwegian Radium Hospital have collected countless valuable samples from cancer patients over the years from both regular clinical care and from clinical research studies. Hospitals across Norway also continually collect and save diagnostic samples, which may be used for medical research at a later stage.

The number of biobanks and the rigorous collection of clinical data in health registers in Norway represent unique assets for medical researchers.

“Norway has a competitive edge on its health data infrastructure.” Christian Jonasson

 

Sharing the data

However, Jonasson also points out that the health registers in Norway are too fragmented. To combat the problem, Biobank Norway are helping the Norwegian Directorate of eHealth to develop a Health Data Program. The digital platform, called the Health Analytics Platform (HAP), will collate copies of relevant data from the various health registers, providing a single point of easy access for researchers.

Biobank Norway also has a long-term vision to collect all biobank data and health data in a common platform. This is a necessary step to unleash a larger national precision medicine initiative. First, they want to organise the data from the four largest population-based cohort studies in one place. In a couple of years, this database would hopefully include 400 000 people, which is a very attractive cohort for medical research.

“We need to attract leading actors from the international health industry and Norwegian start-ups in real collaborations with biobanks.” Christian Jonasson

Important medical research is already being conducted in biobanks across Norway. Jonasson said that there now needs to be a plan to market Norwegian health data and biobanks internationally to spur innovation further.

 

Image of DNA spiral.

Biosamples are also used for sequencing of the human genome, to develop more precise diagnosis and treatment of cancer.

 

The hidden key

To unlock the potential of biobanks, the biological samples need to be analysed and converted into meaningful data, which can be an expensive and laborious process.

Finland, for example, has begun to collect biological samples from 500 000 individuals. One single database holds all phenotypic data, such as diagnosis and treatment, and all genotypic data, which is the mapping of the human genome.

In the UK, there is the Genomics Project, which has already sequenced the DNA (the coded parts of the human genome) of 100 000 patients. The UK Biobank are aiming to sequence the DNA of half a million brits.

Jonasson hopes that such ambitious initiatives will be imported to Norway to build the biobank infrastructure further and provide meaningful data for medical research. He adds that public-private collaborations will be key to drive and fund such large scale initiatives.

Biobank Norway is currently in the process of extending into its third phase and aims to continue to improve the biobanks, the partner institutions and global research collaborations in the future.

 

  • Do you need help with your research and innovation project using biobanks in Norway?
    E-mail Christian Jonasson.
  • For more information, please visit the official website of BioBank Norway.

 

Sign up to OCC newsletter

Kronikk: Dine helsedata kan styrke helsenæringen

This opinion piece was first published on 9 May 2019 in Dagens Medisin, by Ketil Widerberg, General Manager at Oslo Cancer Cluster, and Christian Jonasson, Senior Adviser at NTNU. Both are also members of a work group for innovation and business development for the Health Data Program for the the Norwegian Directorate of eHealth. Please scroll to the end of this page for an English summary.

 

Vi får nye forretningsmodeller innen helse som er basert på digitalisering og persontilpasset medisin. Her kan Norge virkelig lede an!

Christian Jonasson, seniorforsker ved NTNU.

Christian Jonasson, seniorforsker ved NTNU.

Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

HELSE BLIR digitalisert og medisin blir tilpasset den enkelte pasienten. Dette er to megatrender som vil endre forretningsmodellen for helseindustrien. Forrige uke kom Stortingsmeldingen om nettopp helsenæringen. Den åpner for store muligheter for Norge.

I bilindustrien erstatter gradvis digital mobilitet den tradisjonelle boksen på fire hjul. Et eksempel er at Tesla blir verdsatt høyere enn tradisjonelle bilprodusenter blant annet for sin evne til kontinuerlig datainnsamling fra bilene. I helsenæringen vil vi se det samme.

 

NYE MODELLER. Med digital persontilpasset medisin vil nye forretningsmodeller vokse frem. Vi ser eksemplene daglig: Roche, et globalt legemiddelselskap, har nylig kjøpt opp helsedataselskapet Flatiron. Oppkjøpet gjorde de for å kunne utvikle nye kreftbehandlinger raskere, for nettopp tid er viktig for kreftpasienter som kjemper mot klokka. Et annet legemiddelselskap, AstraZeneca, har ansatt toppleder fra NASA. Norske DNVGL, som tradisjonelt har jobbet med olje, gass og shipping, har nå helsedata som et satsingsområde.

Helsemyndigheter erkjenner også endringen mot mer datainnsamling. Legemidler blir mer målrettede og brukes på stadig mindre undergrupper av pasienter. Dette utfordrer hva som er nødvendig kunnskapsgrunnlag for å gi pasienter tilgang til ny behandling. Mens det i dag er kunnskap om gjennomsnitt for store pasientgrupper som ligger til grunn for beslutninger om nye behandlingsmetoder, er det med persontilpasset behandling nettopp viktig å ta mer hensyn til individer og små undergrupper. De amerikanske helsemyndighetene (FDA) har derfor lagt frem retningslinjer for hvordan helsedata kan brukes som beslutningsgrunnlag for nye legemidler.

 

NORSKE FORTRINN. Legemiddelverket i Norge gir uttrykk for at de også ønsker å være i front i denne utviklingen – for også de ser at helsedata gir bedre beslutningsgrunnlag.

Hvordan kan så Norge lede an? Norge har konkurransefortrinn knyttet til et sterkt offentlig helsevesen, landsdekkende person- og helseregister og biobanker som kan knyttes sammen gjennom våre unike fødselsnummer. Dette er få land forunt! Derfor kan vi utnytte dette konkurransefortrinnet for å ta en posisjon i den store omveltningen av helsesektoren og helsenæringen.

Nedenfor følger noen forslag som vi mener vil styrke Norges stilling.

 

PLATTFORM. Vi kan starte med å lage en norsk dataplattform. Selskap leter globalt etter helsedata av god kvalitet. La oss utvikle en dataplattform hvor helsedata er raskt og sikkert tilgjengelig for norske og utenlandske aktører. Et eksempel er helseanalyseplattformen. Her må data gjøres tilgjengelig for alle aktører og for alle legitime formål. Samarbeidsmodeller må utvikles som sikrer at verdiskapingen blir i Norge og pasientene får bedre behandling.

Vi kan utvikle bedre økosystemer. Verdiskapingspotensialet for helsedata ligger i skjæringspunktet mellom offentlig og privat. Dagens offentlige forvaltere av helsedata må derfor samarbeide tettere med norske oppstartsbedrifter og internasjonale aktører.

 

INNSYN. Vi kan bruke personvern som konkurransefortrinn. Hver og en av oss eier våre egne helsedata. Derfor er det viktig med digitale plattformer som gir oss innsyn i egne helsedata.

Hvordan vi kommer til å bruke helsedata om få år, er vanskelig å forutse, akkurat som det var vanskelig å forutse hva konsesjonsutlysningen for oljeutvinning i 1965 ville føre til. Historien viser imidlertid at slike avgjørelser kan ha stor betydning for fremtidens verdiskapning i Norge, og for pasienter i hele verden. La oss derfor ikke overlate til tilfeldighetene hva vi i Norge gjør med våre helsedata.

 

 

English summary:

Digitalisation and precision medicine are influencing emerging business models in the health industry. It is time for Norway to lead the way!

As precision medicine develops, data gathering becomes ever more important. Instead of relying on results from a big patient group, cancer researchers are using big data to find out how treatments can be customised for small patient groups and individual patients.

Norway has a competitive advantage on health data: thanks to its strong public health sector, national health registers and biobanks that can be connected to unique personal ID numbers.

We suggest creating a common platform for Norwegian data, where high quality data can be accessed securely by legitimate national and international companies. Through collaborative models, we can ensure that the medical breakthroughs stay in Norway and benefit the patients. We need to develop better ecosystems that inspire simple collaboration between international key players, Norwegian start ups and the public agencies that handle health data.

Data privacy can be used as an asset. If we ensure everyone has complete access and insight into their own personal health data, people can be empowered to share it for the common good.

The decisions we make today will have great ramifications for the future value creation in Norway and for cancer patients across the world. We should not leave it up to chance.

 

Sign up to OCC newsletter

Radforsk to invest NOK 4.5 million in cancer research

Radforsk, the Radium Hospital Research Foundation, a partner of Oslo Cancer Cluster, is awarding several million Norwegian kroner to new research that fights cancer with light.

Radforsk is an evergreen investor focusing on companies that develop cancer treatment. Since its inception in 1986, Radforsk has allocated NOK 200 million of its profit back into cancer research at Oslo University Hospital. This year, four researchers will be awarded a total of NOK 4.5 million. One of them is Anette Weyergang, who will receive NOK 3.75 million over a three-year period.

“I’m so happy for this grant. As researchers, we have to find funding for our own projects. I didn’t have any funding for the project I have now applied and been granted funds for,” says Anette Weyergang.

Anette Weyergang is a project group manager and senior researcher in a research group led by Kristian Berg. The group conducts research in the field of photodynamic therapy (PDT) and photochemical internalisation (PCI). Radforsk’s portfolio company and Oslo Cancer Cluster member PCI Biotech is based on this group’s research.

What is PDT / PCI? Cancer research in the field of photodynamic therapy and photochemical internalisation studies the use of light in direct cancer treatment in combination with drugs, or to deliver drugs that can treat cancer cells or organs affected by cancer.

 

Weyergang is the first researcher ever to receive several million kroner over the course of several years from Radforsk.

“We have donated a total of NOK 200 million to cancer research at Oslo University Hospital, of which NOK 25 million have gone to research in PDT/PCI. We have previously awarded smaller amounts to several researchers, but we now want to use some of our funds to focus on projects we believe in,” says Jónas Einarsson, CEO of Radforsk.

By the deadline on 15 February 2019, Radforsk received a total of eight applications, which were then assessed by external experts.

 

New use of PCI technology

PCI is a technology for delivering drugs and other molecules into the cancer cells and then releasing them by means of light. This allows for a targeted cancer treatment with fewer side effects for patients.

Weyergang will use the funds from Radforsk to research whether PCI technology can be used to make targeted cancer treatment even more precise.

“The project aims to find a method for delivering antibodies to cancer cells using PCI technology. This has never been done before, and if we succeed, it can open up brand new possibilities for using this technology,” says Weyergang.

Initially, she will focus on glioblastoma, which is the most serious form of brain cancer. Glioblastoma is resistant to both chemotherapy and radiotherapy, and has a very high mortality rate.

“This is translational research, so human trials are still a long way off. We will now use both glioblastoma cell lines and animal experimentation to test our hypothesis. We do this to establish what is called a “proof of concept”, which we need to move on to clinical testing,” says Weyergang.

 

The other researchers who have received funding for PDT/PCI research from Radforsk in 2019 are:

  • Kristian Berg and Henry Hirschberg Beckman: NOK 207,500
  • Qian Peng: NOK 300,000
  • Mpuldy Sioud: NOK 300,000

 

What is Radforsk?

  • Since its formation in 1986, Radforsk has generated NOK 600 million in fund assets and channelled NOK 200 million to cancer research, based on a loan of NOK 1 million in equity back in 1986.
  • During this period, NOK 200 million have found its way back to the researchers whose ideas Radforsk has helped to commercialise.
  • NOK 25 million have gone to research in photodynamic therapy (PDT) and photochemical internalisation (PCI). In total, NOK 40 million will be awarded to this research.

 

Sign up to OCC newsletter

The students in the picture are Jacques Li, a doctor and entrepreneur from France; Diana Murguia Barrios, an economist and political scientist from Spain; Jason Yip, a chemistry engineer from England; and Sam Chong, a lawyer and economist from Malaysia and Australia.

Should Norway implement a clinical trial league table?

We asked four MBA students from Cambridge University to evaluate how patient recruitment practices in Norway can be improved.

The number of clinical trials in Norway has been declining over the last few years. There are many reasons behind this trend, but until now there have been few concrete solutions. With the number of cancer patients on the rise, there is a growing need for access to better treatments.

Oslo Cancer Cluster asked four students from Judge Business School at Cambridge University to research how the number of clinical trials in Norway can be improved. The students were Jacques Li, a doctor and entrepreneur from France; Diana Murguia Barrios, an economist and political scientist from Spain; Jason Yip, a chemistry engineer from England; and Sam Chong, a lawyer and economist from Malaysia and Australia.

“The number of clinical trials in Norway is less than half of the number in Denmark.”

The group focused on one of three factors that influence the number of clinical trials in Norway, namely: the patient recruitment practices. After a comparative analysis with other European countries, they came up with two main recommendations on how Norway can improve patient recruitment.

 

Image och doctors and nurses walking in corridor

How do we motivate hospitals and doctors to recruit more patients to clinical trials?

 

One: Motivating hospitals

The group compared patient recruitment in Norway to France, United Kingdom and USA. Norway was the only country where hospitals don’t have any non-financial incentives to recruit patients to clinical trials. If a hospital’s reputation could be improved in a concrete way by having clinical trials, patient recruitment could also be improved.

The group proposed to create a league table for all hospitals, with cancer trial participation as one of the metrics. This would create competition between hospitals, encourage collaboration between smaller hospitals and larger ones, and make information about clinical trials accessible to patients.

If hospitals were ranked against each other based on clinical trial output, they would more actively recruit into trials due to the reputational incentive.” 

The group also uncovered a misalignment between the funding source and the implementers of the clinical trials. Funding is passed from the Norwegian Health Ministry to the regional health authorities, instead of directly to the hospitals who conduct the trials. The group recommended that the hospitals need direct financial incentives to conduct the trials.

“Regional health authorities in Norway need to ensure that funding provided to them for research is passed down to the hospitals conducting clinical trials.” 

 

Two people holding hands.

How do we raise awareness among patients and doctors about clinical trial participation?

 

Two: Raising awareness

A second discovery in the report was the lack of awareness about clinical trials among both patients and doctors. Patients in Norway lack access to relevant information that would empower them to opt into clinical trials. There was similarly a lack of exposure to clinical trials among early career doctors and a lack of initiatives to collaborate on clinical trials among advanced career doctors.

“Raising awareness among stakeholders is key to improve clinical trial recruitment.” 

The students suggested working in partnership with patient organisations to raise awareness among patients. They recommended a national awareness campaign to inform where patients can find up-to-date information about clinical trials. All hospitals could keep lists of their ongoing clinical trials available on their websites.

If patients knew the benefits of clinical research, they would select a hospital that is ranked highly.” 

The group also provided recommendations to raise awareness among doctors to work on clinical trials. Rotational programs and supplementary courses on research methods and clinical trials may spark interest among medical students to pursue work in clinical trials. Seminars and workshops can help to both raise awareness and inspire collaborative efforts among doctors in their advanced careers.

 

Oslo Cancer Cluster wishes to extend a big thank you to everyone who agreed to be interviewed for this research project:

  • Ali Areffard, Medical team, Bristol Myers Squibb
  • Øyvind Arnesen, Chairman of the Board, Oslo Cancer Cluster
  • Siri Kolle, Vice President Clinical, Inven2
  • Jónas Einarsson, former Chairman of the Board of Oslo Cancer Cluster and one of the founders of Oslo Cancer Cluster Innovation Park
  • Maiken Engelstad, Deputy Director, Ministry of Health and Care Services
  • Katrine Bryne, Senior Advisor, Legemiddelindustrien (LMI)
  • Kristin Bjordal, Business Manager for Research Support and Research Manager in Oslo Hospital Service (OSS) and Chairman of the Board of NorCrin
  • Ida Kommandtvoll, Advisor, Department of Strategy and Analysis, The Norwegian Cancer Society
  • Knut Martin Torgersen and medical team, Merck
  • Steinar Aamdal, the founder of The Clinical Trial Department, Oslo University Hospital

 

View and download the following PDF of the Cambridge report to learn more.
Note: This is a short version of the report, the fuller version also includes an Appendix containing detailed information about all the underlying data and interview material. Please get in touch with Communications Adviser Sofia Lindén if you are interested in reading the full Appendix.

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Download [1.27 MB]

 

Sign up to OCC newsletter

Illustration of health data

Hvordan gjør vi våre mest intime data til gull?

The following opinion piece was written by Ketil Widerberg, General Manager at Oslo Cancer Cluster, and published in Aftenposten on 1 May 2019. It is a response to an opinion piece written by Nikolai Astrup, the Norwegian Minister of Digitalization, which was published on 22 April 2019. The texts are only available in Norwegian, but a short summary in English is available at the bottom of this page.

 

Helsedata er en voksende gullåre, men vi kan ikke grave i den uten videre.

 

I Aftenposten 17. april svarer digitaliseringsminister Nikolai Astrup (H) på en appell om våre verdifulle data.

Astrup påpeker at data ikke kan sammenlignes med olje, for det er ikke staten, men hver og en av oss, som eier våre egne personopplysninger.

Det gjelder i høyeste grad de mest intime av våre data: helsedata.

 

En gullåre av data

Helsedata er en voksende gullåre, men vi kan ikke grave i den uten videre.

Hadde vi ikke først bygd opp beskyttelse av norske data og kompetanse, ville ikke prosjekter som DoMore blitt til.

Forskerne i DoMore bruker avansert bildeanalyse for å gi mer presise kreftprognoser. Samtidig ville ikke prosjektet eksistert uten internasjonale data og kompetanse.

For næringen som jeg jobber i, helsenæringen, er spørsmålet hvordan vi skal unngå å falle i digitaliseringsfellen. Der har mediebransjen landet.

Facebook og Google får all verdens data gratis gjennom samtykke og tar dermed livsgrunnlaget fra tradisjonelle aktører.

 

Trenger god strategi for kunstig intelligens

For norsk helsenæring blir de to strategiene som digitaliseringsministeren snart lanserer, digitalisering i offentlig sektor og kunstig intelligens, svært viktige. I en strategi for offentlige data oppfordrer jeg derfor til at fremskritt innen presisjonsmedisin tas med.

Da Kreftregisteret ble etablert på 50-tallet, forsto ingen den fulle nytteverdien av et slikt register. I dag tiltrekkes forskere og bedrifter fra hele verden for å få bruke data derfra.

Det viser hvorfor vi også i dag bør samle inn mer helsedata enn vi kan dra nytte av umiddelbart.

Hvordan finner vi balansen mellom god bruk av helsedata for å skape næring og rå utnyttelse av store firmaer? Her trenger vi en god strategi også for kunstig intelligens, som tar inn over seg denne balansegangen i helsedata.

Kunstig intelligens gjør presisjonsmedisin mulig på et helt annet nivå enn vi er på i dag, med mye høyere presisjon i behandlingen.

 

Ressurs for pasienter

For fremtidens presisjonsbehandling er helsedata ressursen vi må samle på. Vi må samle inn helsedata som gjør behandlingen bedre for neste pasient. Og vi trenger en struktur av dataene der både firmaer og myndigheter har tilgang til dem.

Jeg vil gjerne legge lista høyt og foreslå en felles database for data fra kliniske studier, hvor både firmaer og myndigheter har tilgang til helsedata umiddelbart etter at hver pasient har fått sin behandling.

Dette kan bidra til raskere tilgang til ny behandling og bedre oppfølging av pasienter med sykdommer som kreft.

Data former kreftbehandling og skaper nye tilbud til pasienter. Hvordan sikrer vi verdien av dataene? Skal vi gi dem bort for å bygge forskning og industri, skal vi ta så mye penger som vi kan for dem, eller skal vi prøve å finne på noe midt imellom?

I arbeidet med de nye strategiene bør våre mest intime data bli diskutert – med sikte på å skape verdi og næring av dem.

 

 

Short summary in English:

The question Astrup raised in his opinion piece concerned how data sharing can be improved across the public sector in Norway.

Widerberg responds by highlighting how we can make use of our health data to create added value and a successful health industry, without allowing large multinational corporations exploit the data freely.

Artificial intelligence makes precision medicine possible on a much higher level than today. We need to collect health data in order to improve treatments for future patients.

Widerberg therefore proposes a database where health data from all clinical trials is made available to both private and public bodies. This would contribute to making better treatments available sooner and provide better follow-up to patients suffering from diseases, such as cancer.

 

Sign up to OCC newsletter

Supporting cancer research with IP rights

Why are legal services an important part of Oslo Cancer Cluster? We asked Andrew Wright from Potter Clarkson to explain why they became a member.

 

Oslo Cancer Cluster helps to connect start ups and entrepreneurs in the cancer field to the legal service providers they need. There are many reasons why a law firm specialising in intellectual property (IP) rights is an important part of a cancer cluster. IP rights play an essential role in securing protection, and developing the value, in an idea or invention.

Andrew Wright, a partner in the law firm Potter Clarkson, member of Oslo Cancer Cluster.

Andrew Wright, a partner in the law firm Potter Clarkson, member of Oslo Cancer Cluster.

Andrew Wright, a partner in Potter Clarkson, explained why they became a member of Oslo Cancer Cluster:

“We have, for a long time, recognised the important developments in the field of oncology being pursued by members of the Oslo Cancer Cluster.

“This is an exciting time to be involved with Oslo Cancer Cluster, and Potter Clarkson thrives on opportunities to interact, and collaborate, with scientists and innovative companies that have ground-breaking ideas and an enterprising outlook.”

 

Why IP protection?

– To build value to attract investors and support ongoing development;

– To realise value in an invention by out-licencing to a commercial partner, in order to generate a funding stream; and/or

– To create exclusivity for the next stage of your commercial plans.

Source: Potter Clarkson

 

Supporting growth

A law firm with experts in IP rights can support innovators and entrepreneurs. They can provide guidance and assistance when seeking to obtain protection for new ideas, developments and inventions.

“Strong protection through relevant IP rights can be critical to the success of any start up or developing business. We believe that there is the potential for outstanding synergy between the needs of the members of Oslo Cancer Cluster and the support that Potter Clarkson offers.” Andrew Wright, Potter Clarkson

 

Building value

Early-stage companies in the cancer field often face great challenges when commercialising their products. Their ideas may only exist on a conceptual level or their products may be at a pre-clinical stage. It can take a company many years to bring a product to market, after developing their technologies and seeking the necessary approvals. It is critical that these companies can fund the ongoing development during this period.

“The decision of whether or not to invest, and the scale of any investment, will typically be based on how well the technologies that form the core of a company have been protected by suitable IP rights.” Andrew Wright, Potter Clarkson

 

Patent protected

Patents are often the main form of IP right. The objective of a patent application is typically to obtain protection for the general concept that underlies an invention, to provide a legally-enforceable right that can prevent competitors either from copying the invention itself, or from launching a closely-related equivalent based on the same concept.

Strong patent rights can provide companies with the ability to control the future commercialisation of their inventions. An owner of patent rights can also negotiate with other companies for licensed access to their invention, whether they want to commercialise it directly or develop it towards a collaborative product.

Entrepreneurs or start ups can apply for patents themselves through the European Patent Office, but it is often a complicated process. Therefore, it may be a good idea to get some advice from a patent professional.

 “Having patent protection, or the opportunity to obtain patent protection, provides strong and commercially-relevant coverage for the core technology of the company and being able to present a plan for generating and supporting future IP, can be key to the success of a Lifescience start up.” Andrew Wright, Potter Clarkson

 

Biotech meets law

All the patent professionals at Potter Clarkson hold degrees in scientific subjects, for example in biotechnology or pharmaceuticals. Their professionals often work across disciplines, which is good as Iinovations do not always fit ‘neatly’ into only a single field of technology.  For example, computer-implemented inventions are increasingly used in the field of therapies and diagnostics, and medical devices become ever more important in the delivery of therapies. In this case, the patent professional needs the experience to work across such inter-disciplinary fields.

“We pride ourselves on being technically knowledgeable, on having the ability to quickly immerse ourselves in your specialist area of science, to rapidly understand your invention, and to ask the right questions.” Andrew Wright, Potter Clarkson

 

For more information about the members of Oslo Cancer Cluster that offer legal services or advice on IP rights, please visit their official websites:

 

Sign up to OCC newsletter

Lansering Menon-rapport

Ny rapport: Helsenæringens verdi 2019

Rapporten gir innsikt i en næring som i 2018 omsatte for 142 milliarder kroner.

Helsenæringen er en dobbel mulighet for Norge: næringen kan løse mange av våre helse- og omsorgsutfordringer de neste tiårene og samtidig bli en av våre største næringer, med eksport til et globalt marked.

Den fjerde Menon-rapporten om helsenæringens verdi går nærmere inn på tallene bak disse mulighetene.

 

Viktige funn i rapporten:

  • Omsetningen i helsenæringen var på 142 milliarder kroner i 2018.
  • Helsenæringen er global og bedriftene i industrien vender seg mot internasjonale markeder tidlig.
  • Helserelatert eksport var på over 23 milliarder kroner i 2018.
  • Næringen er avhengig av ny kapital i utviklingsløpet: fire av ti bedrifter hentet inn ny egenkapital i 2018.
  • Helseindustrien er en gründernæring: en av ti bedrifter er i gründerfasen.
  • Det er en svært FoU-intensiv næring, der spesielt kliniske studier er viktig. Likevel falt antall søkte industrifinansierte kliniske studier fra 175 i 2000 til bare 72 i 2018.

 

I rapporten defineres Helsenæringen som private aktører i hele verdikjeden innen helse i Norge.

I rapporten defineres Helsenæringen som private aktører i hele verdikjeden innen helse i Norge.

 

Hjemmemarked og risikokapital

Mye er på plass for norsk helsenæring, men i følge Menon mangler to ting: Det ene er et stort hjemmemarked med kompetente, krevende lokomotivkunder. Det andre er langsiktig risikokapital for raskere utviklings-, kommersialiserings- og vekstprosesser.

– Det som er litt fint med de to utfordringene, er at de henger tett sammen. Lykkes man med det første, er sjansene store for å lykkes med det andre, understreket Erik W. Jakobsen, Managing Partner i Menon Economics, under lanseringen.

 

En internasjonal næring

Under lanseringsarrangementet i Næringslivets Hus i Oslo 25. april, ble enda et utspill lansert:

Innovasjon Norge med samarbeidspartnere, blant annet Oslo Cancer Cluster, lanserte en global strategi for norsk helseindustri. Den heter “Pioneering sustainable health”.

– Helse er en «born global næring», og det må vi nå utnytte. Vi må gjøre norske helseløsninger bedre kjent internasjonalt. Visjonen er å tredoble norsk helseindustri innen 2030, sa Hans Eirik Melandsø, sektoransvarlig helseindustri i Innovasjon Norge.

Næringsminister Torbjørn Røe Isaksen (H) var også med på arrangementet og presenterte hovedpunkter fra Regjeringens stortingsmelding om helsenæringen, som ble lansert 5. april. Stortingsmeldingen kan du lese på nettsidene til Regjeringen.

Hvordan kan norsk helsenæring lykkes i å ta en internasjonal posisjon? Det er et nøkkelspørsmål som går igjen i rapporten fra Menon, Stortingsmeldingen om helsenæring og posisjonen “Pioneering sustainable health”.

– Vi ligger i et helsenæringsnabolag. Sverige er store, Danmark er veldig store. Det er en stor fordel at “the Nordic region” er kjent for og har kompetanse på dette fra før. Det må vi utnytte bedre, sa Torbjørn Røe Isaksen.

Ordskifte mellom stortingsrepresentant Ingvild Kjerkol (Ap) og næringsminister Torbjørn Røe Isaksen (H). De var enige om behovet for bedre samarbeid mellom private og offentlige aktører.

Ordskifte mellom stortingsrepresentant Ingvild Kjerkol (Ap) og næringsminister Torbjørn Røe Isaksen (H). De var enige om behovet for bedre samarbeid mellom private og offentlige aktører.

 

Offentlig-privat kulturendring

En bedre kultur og insentiver for samarbeid er et annet viktig poeng når norsk helsenæring diskuteres.

– For mange private aktører møter skepsis, stengte dører og problematisering når de forsøker å samarbeide med det offentlige. Vi må ha tjenester som slipper næringen til, slik at næringen også kan forstå hva som skal til, sa Torbjørn Røe Isaksen.

– Det jeg savner i Stortingsmeldingen, er klyngene og TTO-ene. Når vi ser på Menons vekstrater for industrien, ser vi at det er noe som fungerer bra. Framover bør vi gjøre mer av det som fungerer, og ikke bare finne på nye virkemidler. I en videre strategi bør klyngenes rolle få en større plass og utvikles, sa stortingsrepresentant Ingvild Kjerkol (Ap).

 

Du kan lese hele rapporten her:

Bilde av Menon-rapporter om Helsenæingens verdi 2019

Menon-rapporten Helsenæingens verdi 2019

 

 

Lenker til Menon-rapportene om helsenæringens verdi fra tidligere år:

Rapport fra 2018

Rapport fra 2017

Rapport fra 2016

 

Menon-rapporten utgis av: 

Sponsors of the Menon report

Andre relevante saker: 

Meet our new members

Oslo Cancer Cluster proudly presents the new members that have joined our organisation during the first quarter of 2019.

 

The new members represent a valuable addition to our non-profit member organisation, which encompasses the whole oncology value chain. By being a part of Oslo Cancer Cluster, our members are connected to a global network with many relevant key players in the cancer research field. Our members contribute to this unique ecosystem and ensure the development of innovative cancer treatments to improve patients’ lives.

 

Halio DX logo

HalioDx

HalioDx is an immuno-oncology diagnostic company providing immune-based services, which guide cancer care and contribute to precision medicine. HalioDx executes biomarker studies and develop diagnostic devices, in accordance with regulations and in partnership with biopharmaceutical companies. By being a member of Oslo Cancer Cluster, HalioDx can collaborate with academia and industry to deliver clinical research and diagnostic tools that help find the right therapy for the right patient.

“Immuno-oncology and precision medicine are two main focuses of interest for Oslo Cancer Cluster and this is the reason why HalioDx decided to become a part of Oslo Cancer Cluster.” 

“We are convinced that this collaboration will be of mutual benefit and we hope that HalioDx’s comprehensive clinical research platform will represent a great tool for the academic and pharma members who would like to better understand drugs mechanisms of action and identify the right patients for the right therapy.”
Aurélie Fugon, Associate Director, HalioDx

 

 

 

Multiplex DX

MultiplexDX

MultiplexDX is a biotech corporation with the aim to eliminate misdiagnosis of cancer disease. The company’s idea is to create 100% reliable, quantitative, affordable and personalised diagnostic tests. By combining tissue visualisation and sequencing technologies, they can accurately quantify 7 or more cancer markers, generating a specific “barcode”. This unique barcode can then specify the type of cancer and suggests which personalised treatment and medicines to be used, and how long the therapy should last.

“We believe that Oslo Cancer Cluster is the best cancer cluster in the world representing the entire oncology value chain that we want to be part of.” Pavol Cekan, CEO, MultiplexDX

“We plan to create strategic partnerships with Oslo Cancer Cluster members to bring our breast cancer diagnostic test, Multiplex9+, to the market as soon as possible. In assistance with Oslo Cancer Cluster and its members, we want the breast cancer patients to benefit from our 100% accurate, reliable and diagnostic test at the earliest convenience.” 

 

Sanofi Genzyme

Sanofi (Norway)

Sanofi is a global pharmaceutical company and one of their main areas of treatment concerns oncology. Every year, they invest 15% of their revenue into research and development. They do phase I, II and III clinical trials to get new medicines approved for treatment. They want to remain innovative, because they believe that the research they perform today will contribute to preventing and treating diseases in the future.

“Sanofi has a long legacy with R&D in oncology. In the years to come oncology and hematology will be one of the biggest therapeutic areas at Sanofi.

“By becoming a member of Oslo Cancer Cluster we believe that we are able to contribute to unlocking tomorrow’s science by supporting the latest advances in treating cancer in Norway and beyond.” Britt Moe, General Manager, Sanofi (Norway)

“This is especially interesting since in the treatment of cancer, new mechanisms of actions and developments, such as immune-oncology therapies, are very much in the focus.” 

Thommessen logo

Thommessen

Established in 1856, Thommessen is a leading commercial law firm with offices in Oslo, Bergen, Stavanger and London. The firm provides advice to Norwegian and international companies as well as organisations in the public and private sectors, ranging from start-ups, via small and medium size companies to large multi-national corporations. Thommessen covers all business related fields of law.

“We believe that early identification of potential legal issues before they arise is important.” Mirella Gullaksen, Head of Projects and Business Development, Thommessen

“Investing in early phase biotech/oncology companies should be about the relevant team, technology and product breakthrough. All other risks relating to the company, and investments should be reduced to a minimum”. 

 

  • This post is the first in a series of articles, which will introduce the new members of our organisation every three months.
  • Follow us on Facebook or subscribe to our newsletter to always stay up to date!
  • To find out who else is involved in Oslo Cancer Cluster, view the full list of members.

 

Sign up to OCC newsletter

Dr. Pierre Dillard and Hakan Köksal are part of the team behind the new study on CD37CAR T-cell therapy for treatment of B-cell lymphoma.

The first Norwegian CAR

Made in Oslo by a team of researchers from Oslo University Hospital, the first ever Norwegian CAR T cell is now a fact. A potential treatment based on this result depends on a clinical study.

A new Norwegian study shows a genetically modified cell-line with great potential as treatment for patients that are not responding to established CAR T cell therapies. This form of immuno-therapy for cancer patients has recently been approved in many countries, including Norway.

“We hope that the Norwegian authorities will be interested in transforming this research into benefits for Norwegian patients.” Hakan Köksal

 

 

What is a CAR?

Before we go into the research, let us clarify an essential question. What is a CAR? Chimeric antigen receptor (CAR) T cells are T cells that have been genetically engineered to produce an artificialreceptorwhich binds a protein on cancer cells.

How does this work? T cells naturally recognize threats to the body using their T cell receptors, but cancer cells can lock onto those receptors and deactivate them. The new CAR T cell therapies are in fact genetic manipulations used to lure a T cell to make it kill cancer cells. This is what a CAR is doing, indeed CARs replace the natural T-cell receptors in any T cells and give them the power to recognize the defined target – the cancer cell.

CAR-T cell therapy is used as cancer therapy for patients with B-cell malignancies that do not respond to other treatments.

 A severe consequence of using CAR T cell therapy is that it effectively wipes out all the B cells in the patient’s body — not only the cancerous leukemia cells or the lymphoma, but the healthy B cells as well. Since B-cells are an important part of the immune system, it goes without saying that the treatment comes with risks.

Micrograph of actin cytoskeleton of T-cells. The cell is about 10µm in diameter. Photo: Pierre Dillard

Micrograph of actin cytoskeleton of T-cells. The cell is about 10µm in diameter. Photo: Pierre Dillard

T cells: T lymphocytes (T cells) have the capacity to kill cancer cells. These T cells are a subtype of white blood cells and play a central role in cell-mediated immunity.

 

Made in Norway  

Now let us move on to the new research. This particular construct was designed from an antibody that was isolated in the 1980’s at the Radium Hospital in Oslo.

The CAR construct was designed, manufactured and validated in two laboratories in the Radium Hospital campus. One is the laboratory of Immunomonitoring and Translational Research of the Department of Cellular Therapy, OUH, located at the Oslo Cancer Cluster Incubator. This laboratory is led by Else Marit Inderberg and Sébastien Wälchli. The other is the laboratory of the Lymphoma biology group of the Department of Cancer Immunology, Institute for Cancer Research, OUH. This laboratory is led by June Helen Myklebust and Erlend B. Smeland.

“Even the mouse was Norwegian.” Hakan Köksal

The pre-clinical work that made the Norwegian CAR was completed in March 2019.

In the research paper “Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma”, published in the journal Blood Advances, the research team tests an artificially produced construct calledCD37CAR and finds that it is especially promising for patients suffering from multiple types of B-cell lymphoma. This may be treated successfully with novel cell-based therapy.

It now needs to be approved by the authorities and gain financial support to be further tested in a clinical study in order to benefit Norwegian patients.

 

The first CAR-therapy

CAR-based therapy gained full attention when the common B-cell marker CD19 was targeted and made the basis for the CAR T cell therapy known as Kymriah (tisagenlecleucel) from Novartis.

It quickly became known as the first gene therapy allowed in the US when it was approved by the US Food and Drug Administration (FDA) just last year, in 2018, to treat certain children and young adults with B-cell acute lymphoblastic leukemia. Shortly after, the European Commission also approved this CAR T cell therapy for young European patients. The Norwegian Medicines Agency soon followed and approved the treatment in Norway.

“CD19CAR was the first CAR construct ever developed, but nowadays more and more limitations to this treatment have emerged. The development of new CAR strategies targeting different antigens has become a growing need.” Dr. Pierre Dillard

 

Not effective for all

Although the CD19CAR T cell therapy has shown impressive clinical responses in B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma, not all patients respond to this CAR T treatment.

In fact, patients can become resistant to CD19CAR. Such relapse has been observed in roughly 30% of the studies of this treatment. Thus, alternative B-cell targets need to be discovered and evaluated. CD37 is one of them.

“You could target any antigen to get a new CAR, but it is always a matter of safety and specificity.” Hakan Köksal said.

Dr. Pierre Dillard and Hakan Köksal are part of the team behind the new study on CD37CAR T-cell therapy for treatment of B-cell lymphoma.

Dr. Pierre Dillard and Hakan Köksal are part of the team behind the new study on CD37CAR T-cell therapy for treatment of B-cell lymphoma.

 

The Norwegian plan B

The novel Norwegian CAR T is the perfect option B to the CD19CAR.

 “The more ammunition we have against the tumours, the more likely we are to get better response rates in the patients.” Hakan Köksal

The CD37CAR T cells tested in mouse models in this Norwegian study, show great potential as treatment for patients that are not responding to the established CD19CAR-treatment.

“More and more labs are studying the possibility of using CAR therapy as combination, i.e. CAR treatments targeting different antigens. Such a strategy will significantly lower the probability of patients relapsing.” Dr. Pierre Dillard said.

The CD37CAR still needs to be tested clinically. The scientists at OUS underline the importance of keeping the developed CD37CAR in Norway and having it tested in a clinical trial.

It is a point to keep it here and potentially save patients here. We would like to see the first CD37CAR clinical study here in Norway.” Hakan Köksal

 

More from the Translational Research Lab of the Department of Cellular Therapy, OUH: 

 

Encouraging news from BerGenBio

A second group of patients have been added to an ongoing phase II clinical study of a drug combination to treat lung cancer.

 

The ongoing trial is a collaborative effort between two members of Oslo Cancer Cluster: Norwegian biopharmaceutical company BerGenBio and US-based pharmaceutical company Merck (known as MSD in Europe). It involves an kinase inhibitor called bemcentinib, developed by BerGenBio, in combination with an immunotherapy drug called Keytruda (also known as pembrolizumab) from MSD.

 

“Throughout 2018, we reported encouraging updates from our ongoing proof-of-concept phase II clinical trial assessing bemcentinib in combination with Keytruda in advanced lung cancer patients post chemotherapy.”
Richard Godfrey, Chief Executive Officer, BerGenBio

 

The second group will involve patients that have been treated with immunotherapy before, but that have experienced a progression of the disease. There are various treatments available for patients with non-small cell lung cancer, but patients often acquire resistance to treatment. New treatments that can overcome these resistance mechanisms are therefore urgently needed.

 

“I am pleased that we are now extending the ongoing trial to test our hypothesis also in patients showing disease progression on checkpoint inhibitors.”
Richard Godfrey, Chief Executive Officer, BerGenBio

 

The aim is to evaluate the anti-tumour activity of this new drug combination. Preliminary results from the second patient group of the study are expected later this year. BerGenBio is in parallel also developing diagnostic tools to see which patients are most likely to benefit from their drug.

 

The decision to extend the trial was based on new positive results from pre-clinical studies, which were presented at the American Association of Cancer Research (AACR) earlier this week. The results open for the possibility to use bemcentinib both as a monotherapy and in combination with other cancer treatments on a broad spectrum of cancers.

 

 

Sign up to OCC newsletter

The panel at the breakfast meeting on the future of cancer treatments in Oslo.

Giving patients a stronger voice

How can the voices of cancer patients be heard when evaluating new methods of treatment?

A breakfast seminar was held yesterday in the series called The Cancer Treatments of the Future. Over 150 people attended at Litteraturhuset in Oslo, among them were relevant key players from the healthcare sector, governmental agencies, patient organisations and the public. The aim was to identify new opportunities to improve patient involvement when evaluating new methods of treatment.

The seminar was jointly arranged by Oslo Cancer Cluster, Legemiddelindustrin (LMI) and The Norwegian Cancer Society. The sponsors of the event were Astra Zeneca, Janssen and MSD.

 

Anne Grethe Erlandsen

Anne Grethe Erlandsen, the State Secretary of the Norwegian Ministry of Health and Care Services.

Anne Grethe Erlandsen, the State Secretary of the Norwegian Ministry of Health and Care Services, first talked about creating a healthcare service with the patient as the starting point. She said that it is important to involve the patient in the decision-making processes to bring in new perspectives, ask questions and challenge the healthcare service.

“The patient is the most radical agent of change in the healthcare sector.”
Anne Grethe Erlandsen

 

Ellen Nilsen

Ellen Nilsen, Special Adviser at Nye Metoder.

Next, Ellen Nilsen, Special Adviser at Nye Metoder, which is the national system for managed introduction of new health technologies within the specialist health service in Norway. Nilsen gave a presentation of Nye Metoder and its processes.

 “Anyone, including patients, their relatives or patient organisations, can submit a proposal for a new method of treatment.” Ellen Nilsen

The proposal is then managed by the regional health authorities in The Commissioning Forum, which commissions a full Health Technology Assessment (HTA) from The Norwegian Medicines Agency. Anyone can submit input to The Commissioning Forum by e-mail or in a form on the website.

Decisions are then made by the regional health authorities in The Decision Forum, based upon the HTA. Patient organisations are also represented in a reference group that meets every six months. The patient representatives are only observers, but have the right to make verbal contributions.

  • Learn more about Nye Metoder by reading this presentation in English from their official website.

 

Health Technology Assessment (HTA) is the evaluation of a new method of treatment, often in comparison to existing treatments. The treatments are assessed according to a set of criteria: the severity of the disease, the utility of the treatment and its cost effectiveness.

 

Anette Grøvan, Senior Adviser at The Norwegian Medicines Agency.

Anette Grøvan, Senior Adviser at The Norwegian Medicines Agency.

Then, Anette Grøvan, Senior Adviser at The Norwegian Medicines Agency, presented how they are developing a pilot project to involve patients in their HTAs. They have sporadically received input from patients and patient organisations in the past, but they wish to implement a better system for it now.

“Satisfied patients are important to us. Everyone should have a voice, regardless of their diagnosis or disease.” Anette Grøvan

They believe the patients can contribute with their experiences of living with the disease, the quality of existing treatments and their expectations on new treatments.

 

 

A panel discussion, moderated by Markus Moe, the Editor-in-Chief of Dagens Medisin, was then held with the following participants:

  • Tove Nakken, Head of brukerutvalget* at Oslo University Hospital and Deputy Head in Lymfekreftforeningen (The Norwegian Lymphoma Society)
  • Heidi Brorson, member of brukerutvalget* at the South-Eastern Norway Regional Health Authority and Special Adviser in the Norwegian Cancer Society
  • Anette Grøvan, Senior Adviser at The Norwegian Medicines Agency
  • Jan Frich, Chief Medical Officer at the South-Eastern Norway Regional Health Authority and Senior Adviser in the Commissioning Forum
  • Odd Terje Brustugun, oncologist at Drammen Hospital

*”brukerutvalget” is a selected group of patient representatives that exists in each regional health authority

 

Panel discussion at the breakfast meeting about the future of cancer treatments.

The topic of the panel discussion was how to improve patient involvement when evaluating and approving new methods of treatment.

 

Nakken first highlighted the lengthy processes in Norway: “Patients want to take part of the treatments that have been approved in our neighbouring countries. But the bureaucracy in Norway takes too long.”

Brustugun agreed that there is a gap between the treatments available in Norway and abroad, and that this is affecting an ever-growing patient population: “The patient’s perspective is important, because there is a large group of patients that can potentially become long-term survivors if given the new treatments.”

Frich said the overall cost of pharmaceuticals in Norway has actually increased over the years, mostly due to new and expensive cancer therapies. He explained they are legally obliged by Stortinget to evaluate new methods according to a specific set of criteria. The reason that a treatment isn’t approved may be that the effect of it has not been documented well enough.

Brorson called for greater transparency in the decision-making processes: “If there was more openness about the decision-making, the patients would have a greater understanding for it and become better informed.”

Grøvan added: “We are not finished developing the system for patient involvement and there are a lot of considerations to make sure that it becomes structured and fair.”

 

The audience at the breakfast meeting on the future of cancer treatments.

The engaging panel discussion inspired the audience to make their own comments and reflections.

 

The fruitful discussion led to many constructive ideas on how to improve patient involvement. Hopefully, these kinds of collaborative discussions can inform politicians to take the necessary steps forward to improve cancer patients’ lives.

Oslo Cancer Cluster wants to thank the speakers, the sponsors, the organisers and everyone who attended! This discussion will continue at Arendalsuken 2019, at our event August 15. We hope to see you there!

 

  • Here is a summary of the event, written in Norwegian, from LMI’s official website.
Arctic Pharma, a member of Oslo Cancer Cluster, gave students a lecture on the chemistry behind cancer treatments.

Chemistry with mutual benefits

Students were taught about the chemistry behind developing cancer treatments in the Oslo Cancer Cluster Incubator.

In February, forty chemistry students were given a memorable specialisation day on the subject of the chemistry behind developing cancer treatments. The company Arctic Pharma in Oslo Cancer Cluster Incubator invited them to the lab and gave a long and detailed lecture on the chemistry behind the medication they are developing to treat cancer.

Karl J. Bonney, who is a researcher in the company, started the day with an interactive lecture in English about the chemistry of the substance Arctic Pharma hopes will be effective against cancer.

Bonney emphasised to the students that the company is in the early stages of the development, and that it will take approximately three to four years before they are potentially able to start clinical trials on humans to see whether the substance is effective.

The pupils who are studying chemistry as their specialisation in the last year of upper secondary school were obviously fascinated by what they heard. They asked many important questions both to the lecturer, Bonney, and the chemistry teacher, Karsten, who participated to explain the most difficult terms in Norwegian.

 

Sugar-hungry cancer cells

Arctic Pharma is exploiting a well-known biological fact regarding cancer cells, namely that they like sugar, which means they have a sweet tooth. This is called the Warburg effect, and, so far, nobody has used it in the treatment of cancer. Since this is such a characteristic aspect of cancer cells, it would make sense to think that this could be a viable starting point for treatment.

Arctic Pharma is one of the smaller companies in Oslo Cancer Cluster Incubator and is co-located with Ullern Upper Secondary School. Bonney has been permitted to use the school’s chemistry lab to test the chemical substance being developed to attack the Warburg effect.

The chemistry day at the company was organised to return the favour and to inspire the young chemistry students to keep studying chemistry at a university or university college.

 

Sign up to OCC newsletter

Ullern student Jørgen on his work placement in the hospital.

Transporting patients

Student Jørgen Amdim got to experience life as an orderly on his one-week placement at the Norwegian Radium Hospital.

 

Transporting patients in Norway’s biggest cancer hospital is strenuous both physically and psychologically. “But it’s really good,” said Jørgen Amdim, who is studying the program Healthcare, childhood and youth development at Ullern Upper Secondary School. His one-week placement was at the Transport Section at the Norwegian Radium Hospital. The work experience certainly gave him a taste for more.

Jørgen has previously worked in a nursing home, but he found the work a little tedious. He enjoyed being an orderly though and asked the school if there were any available placements.

An orderly is an attendant in a hospital who is responsible for, among other things, transporting patients, medical equipment and other essential materials. Jørgen spent one week as an orderly at the Radium Hospital and he loved it. He enjoyed it so much that he wants to work there again during the summer of 2019.

Knut Arve Kristiansen, the Head of the Transport Section, has worked at the Radium Hospital for 30 years and praised Jørgen:

“He was a perfect addition to our team, and we are very happy with him.”

 

80 km per week

Jørgen enjoys manual labour, which is great if you want to become an orderly. Wheeling around heavy medical equipment or patients in beds and wheel chairs is hard work. Knut Arve explained:

”As orderlies, we’re constantly on the go, and we could end up walking around 80 kilometres on hard floors during a week of work.

“It can be strenuous for the body, so we have to regularly do strength exercises to keep fit,” Knut Arve continued.

Knut Arve only had positive things to say about Jørgen and he hopes that Jørgen will want to return to the Transport Section for a summer job as an orderly.

“Jørgen is a social person and very well liked. This is important for patients when they are transported between examinations and the rooms they are staying in,” said Knut Arve.

Jørgen praises the work environment and especially the warm welcome he received from the other staff.

Jørgen has constantly been accompanied by a colleague from the section during his stay, because he is not allowed to do much on his own when on a placement. If he returns for a summer job, things will be different. Then he will have to work more independently and take responsibility if an emergency should occur while he is transporting a patient.

The orderlies are also responsible for transporting food and medication. To newcomers, the Radium Hospital can appear to be a huge labyrinth, especially outside the wards. The hospital is also currently being renovated, because a new hospital is being built. A sense of direction is therefore essential for anyone finding their way through the building.

 

A future in health

Jørgen does not necessarily want to become an orderly, but sees himself working in healthcare:

“I would really like to work in an emergency room – receiving ill and injured people at the hospital when they arrive in an ambulance. But I think working as an orderly is very exciting too, so I don’t want to exclude it as an option.”

Knut Arve says that a trade certificate is required to work as an orderly and that they currently offer placements for several apprentices in the section. Students need to study Healthcare, childhood and youth development during upper secondary school and then finish a two-year apprenticeship to obtain their trade certificate as an orderly.

”Workdays here are very varied and you meet many different people. It is really fun to talk to people and no two days are the same. I have really enjoyed it.” said Jørgen.

 

Attracting and developing the life science talents of the future is an essential goal for Oslo Cancer Cluster. One way to do that is to take students outside the traditional classroom setting and invite them to work placements and educational lectures. These collaborations between industry and academia give the students a unique insight into the specialist skills needed to become tomorrow’s researchers and entrepreneurs.

  • Find out more about Oslo Cancer Cluster’s school collaboration with Ullern Upper Secondary School.

 

Sign up to OCC newsletter

 

Oslo, Norway, 26.04.2017. Photographs from Oslo Cancer Cluster (OCC), an oncology research and industry cluster dedicated to improving the lives of cancer patients by accelerating the development of new cancer diagnostics and medicines. Photographs by Christopher Olssøn

Natural killer cells dressed to kill cancer cells

New research: A new study may potentially enable scientists to provide cancer immunotherapy that is cheaper, faster and more manageable.

New work by researchers with laboratories at Oslo Cancer Cluster Incubator may help to dramatically improve a T cell-based immunotherapy approach so that it can benefit many more patients.

 

T cell assassins

T cells are the professional killers of the immune system – they have a unique capability to specifically recognize ‘foreign’ material, such as infected cells or cancer cells. This highly specific recognition is achieved through receptors on the surface of T cells, named T cell receptors (TCRs). Once its receptor recognizes foreign material, a T cell becomes activated and triggers the killing of the infected or cancerous cell.

T cell receptors (TCRs): receptors on the surface of T cells, that recognize foreign material and activate the T cell. This triggers the killing of the infected or cancerous cell by the T cell.

 

Adoptive cell therapy 

Unfortunately, many cancers have adapted fiendish ways to avoid recognition and killing by T cells. To combat this issue, an immunotherapy approach known as adoptive cell therapy (ACT) has been developed in recent years. One such ACT approach is based on the injection of modified (or ‘re-directed’) T cells into patients. The approach is further explained in the illustration below.

 

Illustration from the research paper 'NK cells specifically TCR-dressed to kill cancer cells'.

Illustration from the research paper ‘NK cells specifically TCR-dressed to kill cancer cells’.

 

The left side of the illustration shows how redirected T-cell therapy involves:

1) Harvesting T cells from a cancer patient

2) Genetic manipulation of T cells to make them express an ideal receptor for recognizing the patient’s cancer cells

3) Growing T cells in culture to produce high cell numbers

4) Treating patients with large quantities of redirected T cells, which will now recognize and kill cancer cells more effectively

 

An alternative approach 

Adoptive T cell therapy has delivered very encouraging results for some cancer patients, but its application on a larger scale has been limited by the time consuming and costly nature of this approach. In addition, the quality of T cells isolated from patients who have already been through multiple rounds of therapy can sometimes be poor.

Researchers have long searched for a more automated form of adoptive cell therapy that would facilitate faster and more cost-effective T cell-based cancer immunotherapy.

One approach that has seen some success involves the use of different immune cells called Natural Killer cells – NK cells in brief.

Despite their great potential, NK cells have unfortunately not yet been proven to provide a successful alternative to standard T cell-based cancer immunotherapy. One major reason for this may be that, because NK cells do not possess T cell receptors, they are not very effective at specifically detecting and killing cancer cells.

NK cell lines: Natural Killer cells (NK cells) have the ability to recognise and kill infected or cancerous cells. Scientists have been able to manipulate human NK cells so that they grow without restriction in the lab. This is called a cell line. It enables a continuous and unlimited source of NK cells that could be used to treat cancer patients.

 

Cells dressed to kill

The group led by Dr. Sébastien Wälchli and Dr. Else Marit Inderberg at the Department of Cellular Therapy aimed to address this issue and improve NK cell-based therapies.

They reasoned that by editing NK cells to display anti-cancer TCRs on their cell surface they could combine the practical benefits of NK cells with the potent cancer killing capabilities of T cells. This is shown in the right hand side of the illustration above.

The researchers found that by simply switching on the production of a protein complex called CD3, which associates with the TCR and is required for T cell activation, they could indeed induce NK cells to display active TCRs. These ‘TCR-NK cells’ acted just like normal T cells, including their ability to form functional connections to cancer cells and subsequently mount an appropriate T cell-like response to kill cancer cells.

This was a surprising and important finding, as it was not previously known that NK cells could accommodate TCR signaling.

This video shows TCR-NK cell-mediated killing of cancer cells in culture. The tumour cells are marked in green. Tumour cells that start dying become blue. The overlapping colours show dead tumour cells.

 

The researchers went on to show that TCR-NK cells not only targeted isolated cancer cells, but also whole tumours.

The method was proven to be effective in preclinical studies of human colorectal cancer cells in the lab and in an animal model.  This demonstrates its potential as an effective new form of cancer immunotherapy.

 

Paving the way

Lead researcher Dr. Nadia Mensali said:

“These findings pave the way to the development of a less expensive, ready-to-use universal TCR-based cell therapy. By producing an expansive ‘biobank’ of TCR-NK cells that detect common mutations found in human cancers, doctors could select suitable TCR-NK cells for each patient and apply them rapidly to treatment regimens”.

Whilst further studies are needed to confirm the suitability of TCR-NK cells for widespread treatment of cancer patients, the researchers hope that these findings will be the first step on the road towards off-the-shelf immunotherapy drugs.

 

  • Read the whole research paper at Science Direct. The paper is called “NK cells specifically TCR-dressed to kill cancer cells”.
  • The researchers behind the publication consists of Nadia Mensali, Pierre Dillard, Michael Hebeisen, Susanne Lorenz, Theodossis Theodossiou, Marit Renée Myhre, Anne Fåne, Gustav Gaudernack, Gunnar Kvalheim, June Helen Myklebust, Else Marit Inderberg, Sébastien Wälchli.
  • Read more about research from this research group in this article from January.
  • Read more about Natural Killer cells in this Wikipedia article.

 

Sign up to OCC newsletter

One of the tenants in the Oslo Cancer Cluster Incubator.

The Incubator Labs are expanding

The laboratories at Oslo Cancer Cluster Incubator are expanding to meet increasing demand from members.

 

Oslo Cancer Cluster Incubator has recently converted three offices into new laboratories to accommodate the rising demand from their members.

From the opening in 2015, the laboratories in the Incubator have been a great success. Several of the start-ups have expanded their work force and require more offices and lab space.

The new laboratory is jointly occupied by Zelluna Immunotherapy and the Department of Cellular Therapy (Oslo University Hospital). The Institute for Energy Technology and Arctic Pharma have also expanded their laboratories with an extra room each.

The laboratories are now running at full capacity, but there is some space available in the shared labs. Some of the members of the Incubator offer their services to outside companies who are in need of getting lab work done.

“Our ambition is to grow the Incubator Labs further into the new Innovation Park next door.” Bjørn Klem, General Manager

 

Office plan of the OCC Incubator

The Incubator occupies over 550 square meters. Offices have been converted into labs to meet the growing interest from the members.

 

A unique model

The Incubator Labs follow a unique model, which offers both private laboratories and fully equipped shared laboratories. The private laboratories are leased with furniture, water supply, electricity and ventilation. The companies bring their own equipment depending on their needs.

Shared laboratories, including a bacteria lab, a cell lab and wet lab, are leased including basic equipment with the opportunity for companies to bring their own if shared by all tenants. All laboratories share the common support facilities including a cold room for storage, a laundry room, and storage room including cell tanks and nitrogen gas.

“This model of a shared laboratory is very unusual,” said Janne Nestvold, Laboratory Manager at the Oslo Cancer Cluster Incubator.

The advantage of working in a shared lab is that companies can avoid the costs and limitations associated with setting up and managing a laboratory. A broad range of general equipment, including more advanced, analytical instruments, are provided by the Incubator.

”It would be too expensive for a small company to buy all this equipment themselves.” Janne Nestvold, Laboratory Manager

 

The Department of Cellular Therapy (Oslo University Hospital) are one of the members using the shared lab. Photograph by Christopher Olssøn

The Department of Cellular Therapy (Oslo University Hospital) are one of the members using the shared lab. Photograph by Christopher Olssøn

 

 

Open atmosphere

The laboratories have an open and light atmosphere. Large windows provide ample lighting and all spaces are kept clean and tidy. The halls are neatly lined with closets and plastic containers for extra storage.

The general mood is calm and friendly. Nestvold communicates daily with the users about changes, updates and improvements, which sets an informal tone. Thanks to monthly lab meetings, the users are also involved in the decision-making process. The companies often work side-by-side or in teams, fostering collaboration rather than competition. There is therefore a strong workplace culture based upon flexibility and mutual respect.

The companies often work side-by-side or in teams, fostering collaboration rather than competition.

Nestvold also ensures that the high demands on the infrastructure of the laboratory are met. She has put agreements in place to facilitate the members’ needs, such as the washing of lab coats, pipette service and shipping packages on dry ice. With all these services included, the Incubator Labs are attractive for researchers and companies to carry out their cancer research.

 

Over the years, Nordic Nanovector, OncoInvent, Targovax, Intersint, OncoImmunity have conducted research in the laboratories. Now, Arctic Pharma, the Department of Cellular Therapy (Oslo University Hospital), GE Healthcare, the Institute for Energy Technology, Lytix BioPharma, NorGenotech, Ultimovacs and Zelluna Immunotherapy are using the Incubator Labs to develop their cancer treatments.

 

  • For more information about the Incubator Lab, get in touch with Janne Nestvold.

 

Sign up to OCC newsletter

Jon Amund Kyte at the Norwegian Radium Hospital.

Attracting clinical trials to Norway

Dr. Jon Amund Kyte at Oslo University Hospital (OUH) and Oslo Cancer Cluster share the common goal of bringing more clinical trials to Norway.

 

Jon Amund Kyte is the new Head at the Department of Experimental Cancer Treatment at OUH. He also runs three separate clinical trials and is the leader of a research group at the Department of Cancer Immunology, where he develops novel CAR T cell therapy and conducts translational studies.

Kyte aims to increase the number of and improve the quality of clinical trials in Norway. He says this will contribute to more patients gaining access to novel cancer treatments and to improving the efficacy of cancer therapies.

“The only way to improve cancer treatment is to have clinical trials,” said Kyte.

Oslo Cancer Cluster also wants to bring more clinical trials to Norway to develop innovative cancer medicines. The ambition is to enable faster patient recruitment from across the Nordic region, so that many more can benefit from new treatments, such as immunotherapy.

 

CAR T cells are produced by isolating specific cells of the immune system (T cells) from a cancer patient and modifying them so that they become more effective at recognizing and killing cancer cells.

 

Promising advances

Immunotherapy represents a new type of cancer treatment, which activates the patient’s immune-system to fight off the cancer cells. It gives doctors the opportunity to help patients that previously had limited treatment options. Most types of immunotherapy also cause less side effects than traditional cancer treatments.

“The important point is that immunotherapy can have a long-term effect,” said Kyte.

“Most patients that experience a recurrence or progression of the disease cannot be cured. The traditional treatments only have a limited, short-term effect on them. But immunotherapy may have a long-term effect on the patient – and, in some cases, even cure the disease.”

 

Two big challenges

Immunotherapy may sound like a miracle drug, but researchers still have a long way to go to perfect the treatment for all cancer patients. Kyte highlights two of the biggest barriers that remain.

“One challenge is to develop immunotherapy so that it works efficiently on all types of cancer. The other challenge is to learn how to choose personalised treatment plans: to identify an individual’s biomarkers and find out which treatment will be effective for that specific patient.”

A biomarker is a biological molecule in the patient’s body and these may be used to see how well a patient will respond to a certain treatment. Kyte said that to develop immunotherapy, there needs to be more clinical trials. It is the only way for researchers to find out how to activate an immune response in the patient’s body.

“A big potential for development lies in trying different possible combinations of cancer treatments. In my clinical trials, for example, we combine immunotherapy with immunogenic chemotherapy or radiation therapy,” Kyte explained.

 

Jon Amund Kyte presenting the Clinical Trial Unit.

The Clinical Trial Unit are experts in assisting companies and researchers to conduct clinical trials in Norway.

 

Welcome, companies

OUH has a long history of conducting clinical trials and is an appealing option for both researchers, doctors and companies that wish to initiate their own trials. Kyte welcomes more companies to conduct clinical trials at OUH:

“The more clinical trials that are conducted here by companies, the stronger our clinical research environment becomes and our ability to run our own studies is also strengthened.”

The Clinical Trial Unit in Kyte’s department offers its services to companies that want to run a clinical trial at OUH. They have extensive background knowledge of how the hospital is organised and which approvals are needed to conduct a clinical trial in Norway. They can step in as project coordinator for companies that need help to get their clinical trials up and running.

“We are highly experienced in applying for approvals in Norway. When you run a clinical trial, there are regulations from the Norwegian Medicines Agency and the ethical committee and other governmental agencies. A clinical trial also involves many different parts of the hospital – the departments of pathology and radiology, the laboratories, the infusion unit, the hospital wards and out-patient clinic and the administrative offices that oversee different agreements, data management and biobanking.”

 

Nordic clinical trials

All these administrative obstacles may appear discouraging, but there are many convincing reasons to conduct a clinical trial in Norway.

“The Oslo University Hospital is a good place to run a clinical trial, because in terms of the number of cancer patients, it is one of the largest hospitals in Europe. Norwegian healthcare is also extremely well-organised. Patients are rarely lost to follow-up, because there are no private healthcare alternatives and patients rarely move out of the country,” Kyte explained.

The Clinical Trial Unit is also taking part in the development Nordic Nect, a collaboration to recruit patients from the entire Nordic region to clinical trials. The plan is to have one hospital where the clinical study is conducted and to involve patients from Sweden, Denmark, Finland and Norway. There will then be a population of 25 million people from which to recruit patients, which opens the possibility for larger clinical trials.

“This is a good thing for the companies that want to run clinical trials in Norway. It is also good for the researchers. But most of all, it is good for the patients – who have the opportunity to take part in more novel cancer treatments,” said Kyte.

 

 

 

 

 

Doctor examining the birthmark of a female patient

Promising start for expansion group of Targovax clinical trial

Targovax, one of the members of Oslo Cancer Cluster, has begun an expansion patient group in the clinical trial of a drug to treat skin cancer.

The company Targovax is developing immune activators to target solid tumours that are difficult to treat. The drug in question, called ONCOS-102, is aimed at patients with malignant melanoma (skin cancer) who have either been through chemotherapy, biological therapy or surgery and experienced a recurrence or progression of the cancer.

 

How does it work?

The immune activators work by activating the patient’s own immune system to attack the cancer cells. The drug that is now being tested is a genetically modified oncolytic adenovirus, a type of virus that has been designed to infect in the cancer cells and then replicate.

 

Initial positive results

targovax logo

Targovax, a member of the Oslo Cancer Cluster, are developing a treatment for skin cancer.

In September 2018, the first six patients had been treated with 3 injections of the drug and all of them showed a strong activation of their immune systems – one patient even had a complete response. The results suggested that the patients could benefit from more injections of the drug.

“The results seen to date with only three injections of ONCOS-102 are promising, and we are confident that by increasing to twelve injections we will release the full potential of ONCOS-102 to reactivate these patients to respond to Keytruda treatment,” said Magnus Jäderberg, CMO of Targovax.

 

Expansion patient group

On 11 February 2019, the first patient in the expansion group of the phase I trial was injected with ONCOS-102. The patient will be treated in combination with pembrolizumab, also known as Keytruda, an immunotherapy drug that works as an immune checkpoint inhibitor. This means that the drug involves antibodies, which “unlock” the protective mechanisms of the cancer cells so the immune system then can destroy them.

 

For more information, read the full press release from Targovax.

New collaboration aims to treat cervical cancer

The companies Vaccibody and Roche have started a new collaboration to investigate a drug combination to treat patients with advanced cervical cancer.

Both companies are members of Oslo Cancer Cluster and are involved in the development of novel cancer treatments.

Martin Bonde, CEO of Vaccibody, said: “We are very pleased with this collaboration. This is an important study as it explores a novel targeted treatment approach that addresses the high medical need of patients with advanced cervical cancer.”

Cervical cancer is the most commonly occurring cancer among women in developing countries and is the second most commonly occurring cancer amongst women worldwide.

Vaccibody is a vaccine company that aims to develop and discover new immunotherapies to treat difficult forms of cancer. They have developed a therapeutic DNA vaccine that treats cancers caused by HPV (the human papillomavirus).

Cervical cancer is caused by high risk HPV. HPV16 is the type that most frequently causes cancer.

Immunotherapy is a type of cancer treatment that aims to switch on a patient’s immune system to kill cancer cells.

Roche is a healthcare company that has developed an immune-checkpoint inhibitor. Now Vaccibody wants to test their vaccine in combination with the immune-checkpoint inhibitor designed by Roche.

An immune checkpoint inhibitor is a type of drug that blocks certain proteins made by some types of cancer cells. When these proteins are blocked, the “brakes” on the immune system are released and T cells are able to kill cancer cells better.

Agnete Fredriksen, President and CSO of Vaccibody, said that the combination of the two drugs build on the positive results seen when their vaccine has been used on patients with cervical cancer. Therefore they now expect to see positive results when they combine the vaccine with an immune checkpoint inhibitor.

During the second half of 2019, Vaccibody expects to begin the phase II study, which will involve 50 patients. It will assess the safety of the drug, its ability to invoke a response in the immune system, how the patients tolerate it and how efficient the drug is. The group for this new drug combination involves patients with advanced cervical cancer.

 

Raised NOK 230 million

Vaccibody also raised NOK 230 million (EUR 23.6 Million) in a private placement the same week. The sum was indeed placed all within one day, according to Agnete Fredriksen.

The proceeds from the share sales will be used to conduct the phase II clinical study of the drug combination from Vaccibody and Roche. The money will also go to the preparation of expansion patient groups in Vaccibody’s clinical trials and to generate corporate purposes.

 

For more information, read the press release from Vaccibody.

 

Three students experimenting with fruit flies in a lab.

Operation fruit flies

Fruit flies are not only annoying little insects that appear when bananas are overripe. They are also popular research tools for cancer researchers.

The four pupils Kalina Topalova Casadiego, Ida Hustad Andresen, Andreas Bernhus and Dina Düring got to experience how cancer researchers look at fruit flies during their work placement in January.

“Let’s turn on the gas, and then I’ll put some fruit flies on the pad under your microscope.” Speaking is cancer researcher Lene Malrød who, together with her colleague Nina Marie Pedersen, is responsible for four pupils from Ullern Secondary School on work placements.

“Gosh! They’re moving,” proclaims one of the pupils.

But not for long. Soon, all the fruit flies are anaesthetised and, eventually, dead; then the pupils are tasked with surgically removing the ovaries of the female flies. It is easier said than done, even with the help of microscopes to enhance the tiny flies. Especially when the operating tools are two tweezers.

Fruit flies are kept in two test tubes

The fruit flies are kept in test tubes.

 

An exciting placement

It is the third day of the pupils’ work placement at the Institute for Cancer Research, located next to the school. For four days at the end of January, they have learnt about cancer research and which methods researchers use in their daily work.

“The work placement is not like we imagined,” says Kalina and Ida.

“There’s a lot more manual work than I would have thought, and then you realise how important research is through what we do,” says Ida.

She is the only one who is specialising in biology in combination with with other science subjects, and she finds this very useful when working in the lab together with researchers. The other three have had to catch up on the reading, but they all agree that it is very exciting.

“Yesterday, we learnt a lot about CRISPR, which is a new method for cutting and splicing genes. Media gives you the impression that this is a highly precise tool, but the researchers here say that a lot can go wrong, and that it’s not at all as precise as you might think,” says Ida.

A student looks at fruit flies under a microscope

The students look at the fruit flies under a microscope.

 

From Western Blot to flies

A total of twelve pupils were picked out for this work placement. They have been chosen based on motivation and grades, and they all have a wish to study something related to medicine or science after they finish upper secondary school.

The twelve students are divided into three groups with completely different activities and get to learn a number of different research methods. The group consisting of Ida, Kalina, Andreas, and Dina, for instance, is the only group which will have a go in the fly lab.

“Am I really supposed to remove the ovaries? I don’t see how,” one of the pupils say, equally discouraged and excited.

Andreas, on the other hand, is in complete control. First, he has separated the males and the females with a paint brush. He has then used the tweezers to remove the heads from the females, punctured the bottom to remove the intestines, and finally found the ovaries in the abdomen.

Lene gathers all the different body parts for the pupils to look at through a different microscope. These fruit flies are in fact genetically manipulated to glow in the dark – they are fluorescent.

If you are wondering why researchers use fruit flies as part of their research, you can read more about it in this article from Forskning.no (the article is written in Norwegian).

“It is so much fun to be here, and we are really lucky to get this opportunity,” says Dina on her way from the fly lab to another lab to carry out another experiment.

 

The pupils on the work placement have uploaded many nice photos and videos on Ullern Secondary School’s Instagram account – visit their account to see more from the placement.

Audience at Cancer Crosslinks 2019

Top presentations from Cancer Crosslinks 2019

See them again or for the first time: videos from the Cancer Crosslinks 2019 presentations.

Cancer Crosslinks is Oslo Cancer Cluster’s annual, open conference for the Norwegian oncology community. It offers a full-day educational program featuring distinguished international and national experts presenting recent advances in precision oncology and cancer immunotherapy.

More than 300 participants joined Cancer Crosslinks on 17 January 2019 and enjoyed excellent talks and discussions presented by leading international oncologists and researchers and their Norwegian colleagues.

 

The speakers’ top topics

The speakers discussed new insights into sensitivity and resistance and features of the tumour microenvironment critical for the clinical course. They also discussed emerging tissue agnostic biomarkers, where «tissue agnostic” refers to the ability to develop therapies based upon biomarkers or other molecular targets to treat a disease. A biomarker is a measurable indicator of a biological state or condition.

Other topics were learnings from cancer molecular evolution studies, and how big data approaches are used to improve patient care. Together with an engaged audience, the presenters were really connecting the dots for improved patient care in precision oncology.


Professor Naiyer Rizvi
, Director of thoracic oncology and of immunotherapeutics for the division of haematology and oncology at Columbia University Medical Center, New York, gave the opening keynote in the form of a video presentation. He is an internationally recognized leader in the treatment of lung cancer and immunotherapy drug development.

In his presentation, titled: “Sensitivity and resistance to immuno-oncology: Biological insights and their translation into precision treatment”, Prof. Rizvi also addressed the question “What happens when the doctors expect the patient to respond to immunotherapy, but then the patient does not?”

WATCH PROF. RIZVI

Professor Rizvi

 

Dr. Aaron Goodman, MD, is a haematologist and medical oncologist specialized in treating a variety of blood cancers. He holds a position as Assistant Professor of Medicine at the Moores Cancer Center at UC San Diego Health in La Jolla, California.

During his talk, Dr. Goodman presented tumour mutational burden and other emerging tissue agnostic biomarkers for response to cancer immunotherapy and how to implement these into the clinic. He also spoke about his experience from the Rare Tumour Clinic in San Diego, where they perform a comprehensive molecular profiling for about 22-25% of cancer patients with rare tumours. The goal is to identify a matching therapy for each patient.

After his presentation, Dr. Goodman commented to Oslo Cancer Cluster:

“We started by doing data collections and help patients and learn at the same time. It is a benefit that we at least have the patient’s data and experience with that patient so that we can go forward and help the next patient.” Aaron Goodman

WATCH DR. GOODMAN

Dr Goodman

 

Dr. Randy F. Sweis is an Assistant Professor in the haematology/oncology section at the University of Chicago. He works with cancer immunology, developmental therapeutics and biomarkers, with a clinical interest in phase 1 clinical trials and genitourinary malignancies. His laboratory research involves the identification and targeting of tumour-intrinsic immunotherapy resistance pathways.

During Cancer Crosslinks, Dr. Sweis presented his work on immunophenotypes: “The T cell-inflamed tumour microenvironment as a biomarker and its clinical implications.”

WATCH DR. SWEIS

Dr. Sweis

 

Dr. Marco Gerlinger is a clinician scientist at the Center for Evolution and Cancer at the Institute of Cancer Research in London and a consultant Medical Oncologist in the GI Cancer Unit at Royal Marsden Hospital. He develops novel techniques to detect and track intra-tumour heterogeneity in solid tumours to define evolutionary plasticity and common evolutionary trajectories in cancers. Cancer cell plasticity is the ability of cancer cells to change their physiological characteristics.

Dr. Gerlinger shared the latest insights into cancer evolution and discussed the limits of predictability in precision cancer medicine. How can clinicians and researchers exploit important data on tumour development?

During his visit in Oslo, Dr. Gerlinger commented: “We have had fantastic discussions with an audience that is really well informed and brings up the challenges we are facing and the research we are doing.”

“This is the first time I have given a talk in Norway and obviously there is a lot going on here. I am already thinking about some collaborations, because there are some interesting advantages here through big tumour banks and cancer registries.” Dr. Marco Gerlinger

WATCH DR. GERLINGER

Dr Gerlinger

 

 

Professor Dr. med. Lars Bullinger is Professor of Hematology and Oncology and Medical Director of the Department of Hematology, Oncology and Tumor Immunology at Charité University Medicine Berlin.

He is a partner in the Innovative Medicines Initiative project HARMONY (Healthcare alliance for resourceful medicines offensive against neoplasms in haematology) aiming to use big data to deliver information that will help to improve the care of patients with haematologic cancers.

In his keynote speech he presented the “best of hematology from 2018” to the Cancer Crosslinks audience. He also addressed emerging therapeutic opportunities and the impact of big data for precision treatment in haematology.

WATCH PROF. DR. MED. LARS BULLINGER

Lars Bullinger

 

James Peach is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, UK. Prior to this role, he was the Managing Director at the main programme for Genomics England from 2013 to 2017. He presented his perspectives on the implementation of precision medicine in the UK and discussed the status, lessons learned and the way forward.

WATCH JAMES PEACH

James Peach


The expert panel
You can read more about how the Norwegian expert panel reacted to James Peach’s presentation and the state of precision medicine in Norway in the article below, also from Cancer Crosslinks 2019. The article contains a video of the panel debate.

Getting genomics into healthcare: look to the UK

 

Raphael Lømo, Foto: Fullscreen Visuals

Why a logistics company joined the cluster

Kuehne + Nagel joined Oslo Cancer Cluster last year. Why did a logistics company join a cluster dedicated to cancer treatment?

 

Kuehne + Nagel is one of the world’s leading logistics providers, and pharmaceuticals are certainly a category of product that requires special care when moved between locations.

This is an interview with Raphael Lømo, the National Manager for Pharma & Healthcare Development Logistics for Kuehne + Nagel in Norway.

 

“Why did you join a cluster dedicated to cancer treatment?”

“Being one of the leading logistics companies in the pharmaceutical and healthcare industry, we realized that a membership in Oslo Cancer Cluster is beneficial for both the other members and us. The members get access to an international good distribution practice (GDP)-compliant pharmaceutical logistics network and professional support within the pharmaceutical supply chain. At the same time, Kuehne + Nagel gets linked to the currently leading and possible future players in the oncology field, which will help us to increase our understanding and to proactively try to design solutions for the members in this industry. Members can focus on their core competences which is in the R&D field while we offer to take care of the distribution challenges, which is our core competence. Kuehne + Nagel’s membership linked our industries and completed your oncology value chain.”

We are also very interested in working with start-up companies which are supported by Oslo Cancer Cluster Incubator. It is inspiring to be involved in interesting and innovative projects and at the same time it helps us to keep the finger on the pulse of the pharmaceutical industry. It would not be the first time that we successfully accompanied a start-up by offering pharmaceutical specific supply chain counselling and consulting services.”

Last but not least, it feels really good to contribute to improve the lives of often very sick cancer patients, which we have been doing for many years in the prostate cancer field. We can identify ourselves with your vision to help patients by accelerating the development of cancer treatments.” Raphael Lømo

 

“What does logistics innovation have to do with cancer medicine?”

“Well, based on our experience, cancer medicines are often extremely urgent, temperature sensitive and sometimes even classified as dangerous goods shipments, e.g. radioactive. This combination makes it quite challenging to design safe solutions and both visibility, risk control, and reliable handling are the most important factors to protect the integrity of cancer medicines. We constantly work on innovative solutions to improve the level of control of these factors, such as new IT systems and Internet of Things (IoT) real-time tracking devices. ”

Part of Kuehne + Nagel’s solution for safe logistics. Photo: Kuehne + Nagel

Part of Kuehne + Nagel’s solution for safe logistics. Photo: Kuehne + Nagel

 

“I understand that there are some “pharma shipment enemies” in the logistics industry: Temperature, time, handling and dangerous goods. What is your solution to these challenges in shipping pharmaceuticals?”

“Most importantly, you need a reliable logistics partner which understands the full scope of GDP and the challenges of shipping pharmaceuticals globally. Due to our close relationship to all major airlines, ground handlings agents, and trucking companies, in extreme cases we can customize solutions for very sensitive shipments. Such solutions will be complimented with state of the art tracking technology which transmits both location and other relevant data in real-time to KN Login, our data and IT solution that provides visibility and control of your shipment. There you can follow your shipments 24/7/365. Moreover, a team of trained pharmaceutical logistics specialists can monitor your shipment and provide status updates if required. In case of any deviation of the shipment plan, this global service desk can proactively take action to get your shipment back on track. Our award winning KN PharmaChain solution is the basis for every challenge in the pharmaceutical supply chain industry.”

“We have a vast database that includes the most important information and capabilities of major airlines and ground handling agents at the most important airports around the world. This is a unique database and provides very valuable information in order to plan shipments and conduct Lane Risk Assessments. As an example, with one click we know the capacity for storing pharmaceuticals at certain temperature ranges at warehouses of different airlines and airports all over the world. This tool helps us to analyses shipment processes and mitigate potential risks.”

 

“Do you have any advice to companies looking to send fragile drugs or other pharmaceuticals?” 

“Look for a reliable and experienced logistics partner with a global “owned” network which fully understands the requirements of shipping fragile pharmaceuticals but also follows the Good Distribution Practice (GDP), not only in Norway but globally. We highly recommend to conduct a GDP audit before working with a potential logistics partner. Norwegian logistics companies are not audited by the Norwegian Medicines Authorities and often do not understand and follow the full scope of the GDP guideline. Keep in mind that it is in the responsibility of the pharmaceutical company and not the logistics company that the products are transported under GDP compliant conditions.”

 

About the company

Kuehne+Nagel is listed on the Swiss stock exchange, but the majority is still owned by Mr. Klaus-Michael Kuehne.

Since 1890, when the business was founded in Bremen, Germany, by August Kuehne and Friedrich Nagel, Kuehne + Nagel has grown into one of the world’s leading logistics providers.

Today, the Kuehne + Nagel Group has some 1,300 offices in over 100 countries, with around 79,000 employees.

The company specialises in seafreight, airfreight, contract logistics and overland businesses, with a clear focus on high value-added segments such as IT-based integrated logistics solutions.

KN PharmaChain is Kuehne+Nagel’s supply chain innovation for pharmaceutical and healthcare shipments.

Getting genomics into healthcare: look to the UK

During Cancer Crosslinks 2019, one thing was crystal clear: there is a need to include broader genomic testing into treatments for cancer patients in Norway.

“We are lacking behind here in Norway!”

Professor Ola Myklebost, from the Department of Clinical Science at the University of Bergen, was definitely ready for action in the panel debate at Cancer Crosslinks 2019, fittingly named “Call for Action”.

The panel and the audience of about 300 people had just listened to the talk given by James Peach. He is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, and prior to this, he was the Managing Director at the main programme for Genomics England from 2013 to 2017 and led the UK’s Stratified Medicines Program.

Peach told the audience how they have been implementing precision medicine into the public health care system (NHS) in the UK, using genomic testing, during the last decade. He demonstrated how the industry is part of this public endeavour, how political support and investment contributed to industry development, and how they addressed complex issues like sharing health data and using artificial intelligence.

It started with very little.

“In 2010, we had no structure”, Peach told the audience.

 

James Peach presenting at Cancer Crosslinks 2019

Sequencing 100,000 genomes

Thanks to all the British cancer patients who consented to Genomics England using their data, and a lot of common public-private efforts, Genomics England has now reached its goal of sequencing 100,000 whole genomes from NHS patients, according to their webpage. It takes a lot to accomplish this number, but luckily there are things to learn from the UK effort.

“Circulating tumour DNA testing is absolutely necessary”, Peach said from the podium.

The Life Science Sector deal from the British government outlines this public-private effort. It shows how significant government commitment, funding and strategic actions triggered investment and initiatives from the life science industry. You can read the entire document at the official webpage of the British Department of Business, Energy and Industrial Strategy, following this link.

James Peach visited Norway earlier as a speaker at Cancer Crosslinks 2012. Returning now, he was truly surprised about the current state of precision medicine in Norway.

 

Concerned about Norway

In an interview with Oslo Cancer Cluster, James Peach shared a concern as an answer to the question “What impressions are you left with after this conference?” 

“It has left me quite concerned about the state of precision medicine in Norway. I thought you would be looking forward to the things you could do, but it turns out that there are actually some things that you should have done already.”

“Like what things?” 

“Like universal application of a cancer panel test that is commercially feasible and deals around getting your data shared appropriately.”

Do you think we can have a Genomics Norway?”

“Of course. It is probably about combining two things. One is that you got to get the basic stuff right. People need to have access to gene tests for their clinical care. Luckily the people here are a group of experts who are all connected to each other and who understand the system. It is not a massive system. I think there is a real chance to choose an area where Norway could do it exceptionally well. What that area is, is for you to choose.”

 

Concerns in Norway

Back in the panel discussion, Hege G. Russnes, Pathologist, Senior Consultant and Researcher at Oslo University Hospital, was getting involved:

“We need more information to help clinicians make therapy decisions. (…) Norway has no plan or recommendation for multi gene tests.”

Christian Kersten, Senior Consultant at the Center for Cancer Treatment at Sørlandet Hospital, agreed.

“I’m the clinician, I treat patients, patients die because of metastasis. I have been treating cancer patients for 20 years now and I feel it increasingly difficult to keep the trust of the patient.”

“If you ask the patients, they will sign the papers with consent of sharing data in 99% of the cases”, Myklebost added.

“We are only 5 million, we do not have to reinvent the wheel. Erna Solberg should invite James Peach for a cup of tea”, Christian Kersten said, finishing up the panel talk.

 

The entire panel debate is available to watch at the webcast webpage:

WATCH THE PANEL DEBATE

 

More on UK Medicines Discovery Catapult 

Did this brief article make you interested in the work that James Peach and UK Medicines Discovery Catapult does? In this short video, Peach explains the challenges with access to health data for drug discovery and how to overcome them:

 

More from Cancer Crosslinks 

We have more from Cancer Crosslinks 2019 coming up. Stay tuned and subscribe to our newsletter, and you will not miss videos of the talks and interviews with the other distinguished speakers at the conference.

Why a Nordic mentor network is a good idea 

The Nordic Mentor Network of Entrepreneurship (NOME) is the first pan-Nordic mentor network for lifescience start-ups. Why is it a good idea for start-ups working in cancer?

 

Bjørn Klem has an answer. He is the General Manager of Oslo Cancer Cluster Incubator and point of contact for start-ups within the cancer field in Norway.

“Start-ups working in cancer need to access commercialisation expertise and investor networks. When looking for this, it is an advantage to seek in other Nordic countries where investors are experienced with cancer and biotech in general. Participating in NOME will also take you into their global network.” Bjørn Klem

 

Connecting with a mentor team

NOME is based on the mentoring principals of MIT’s Venture Mentoring Service. The fundamental principle is to connect first time entrepreneurs with a team of three to four experienced and skilled mentors to help them reach their goals and technology milestones. 

From Boston to the Nordics, this is the first mentor network within life sciences that spans across all the Nordic countries. 

In Norway, Oslo Cancer Cluster Incubator og the health incubator Aleap are coordinating start-ups with suitable mentors.

“Team mentorship, where mentees have a group of mentors, rather than single one-on-one mentorship, encourages more diverse thinking, cross-disciplinary approaches to ideas and problem solving, and it allows the access to professionals from different fields.”  NOME Magazine Issue 1 2018

 

Norwegian mentors and start-ups

One of the Norwegian NOME mentors is Kari Grønås. She has extensive experience in drug development and commercialisation within the pharmaceutical industry.

You can listen to her (in Norwegian) in this video that was made by Oslo Cancer Cluster Incubator as the programme was just starting in Norway in 2017.

One of the Oslo Cancer Cluster members that have taken advantage of the NOME opportunity and mentors, is Nacamed.

Nacamed is a Norwegian spin-off company of Dynatec AS. The Nacamed technology is based on 10 years of research on silicon done by Dynatec engineering. According to the company webpage, this enables a production that can tailor particles with the desired physical attributes. With this, Nacamed aims to create a new generation of treatment methods.

 

Best in class-network

This video, made by Accelerate, explains the concept of NOME and the value it adds to the Nordic startup ecosystem.

The mentors are volunteering to share their knowledge and experience with new entrepreneurs within fields such as digital health, immuno-oncology and AI in healthcare. NOME mentors can give unbiased advice, provide strategic guidance, open their network and possible collaboration partners, as well as assisting in reaching key milestones.

The start-ups have to be best in class too. The local NOME partners evaluate the companies on the novelty of the science or technology, their high commercial potential as well as the strength and commitment of the founding team. Furthermore, strong IP or alternative protection strategies, market differentiation, and the impact NOME potentially can have on the company’s development are also taken into consideration.

Participation is free of charge and funded by the Novo Nordisk Foundation.

Infographic from NOME magazine.

Source: The NOME Magazine, Issue 01, 2018

 

20 start-ups since 2016

Since 2016, 20 start-ups have joined NOME and of these two have graduated from the program. Graduation usually means the start-up has successfully raised funds for the coming few years and has engaged a formal board and therefore has less need for the NOME mentors.

The mentors either move on to work with other emerging companies or have been so excited about the potential of the company they have been working with that they have taken a seat on the board.

By the end of 2018, NOME had 50 mentors and 18 enrolled start-ups.

 

Mentors in immuno-oncology

In the NOME Magazine first edition, released in October, Carl Borrebaeck, professor at Department of Immuno-technology at Lund University in Sweden, is interviewed about his field of expertise, immuno-oncology and creating companies from his research. Borrebaeck is a founding mentor in NOME and has been part of the network for the past two years. 

“People tend to think, that innovation just happens and that it will reach patients without any commercial drive. That is simply untrue.” Prof. Carl Borrebaeck 

He continues to explain what is really needed to make health innovations happen:

“A combination of companies and academia is needed. Big pharma is always looking for the newest discoveries and ways they can collaborate in order to stay at the forefront of innovative research. The Nordics are highly innovative and they have a strong reputation globally. However, there are too few big pharma companies commercializing the science at the very early stages. This is often a major challenge for emerging companies who then have to seek funding not only in the Nordics but across Europe and the US to cover this funding gap.”

 

Mentors in artificial intelligence

NOME has mentors in several interesting life science fields. Lars Staal Wegner, the CEO of Evaxion Biotech, is another mentor. He started a company dedicated to using artificial intelligence, supercomputers, and big data to fight cancer and infectious diseases. In the NOME Magazine Wegner says: 

“It is no longer the pharma industry or the companies producing the off-the-shelf drugs. It is the ones who own the data and know how to convert it to effect, the cloud-based giants that are half life science half tech. This is maybe 30-40 years into the future, but it is important already now to know that the tech evolution is not linear. It is exponential. We have reached an inflection point in tech. The industry doesn’t have five or ten years to toe the line. It is exploding.” 

Artificial intelligence and machine learning are expected to have an unprecedented impact on how drugs are developed, their cost, and time to market, according to Wegner. 

 

Nordic partnership

NOME is operated by Accelerace and funded by the Novo Nordisk Foundation. The initiative is represented in the Nordic region through partnerships in Sweden, Norway and Finland. In Norway, Oslo Cancer Cluster Incubator og the health incubator Aleap are coordinating start-ups with suitable mentors.

In the US, the California Life Sciences Institute (CLSI) is a new partner for NOME. In fact it is too new to have entered the overview below. CLSI is a non-profit organization which supports entrepreneurship, STEM education and workforce development for the life science industry in California. It is located in the San Francisco Bay Area.

Infographic from NOME magazine.

Source: The NOME Magazine, Issue 01, 2018

Presenter at Cancer Crosslinks 2019.

Cancer Crosslinks LIVE streaming

Today, Thursday 17 January, we broadcast LIVE from our conference Cancer Crosslinks at Oslo Cancer Cluster Innovation Park.

Please join us and hear from a distinguished panel of international and Norwegian experts as they discuss the Next Wave of Precision Oncology, share new perspectives, and address the challenges and opportunities ahead. The subtitle of this year’s 11th Cancer Crosslinks is “Next Wave Precision Oncology – Connecting the Dots for Improved Patient Care”.

The broadcast starts at 9 AM and last until the conference ends at about 4 PM. Please follow the link to watch LIVE:

LIVESTREAM HERE

 

If you would like to know more about the international speakers at Cancer Crosslinks 2019, please read this article.

Researcher testing lab sample.

New research: 3D structure tumors in immunotherapy

New work from cancer researchers at the Department of Cellular Therapy could help to streamline the development of exciting new immunotherapy approaches for treating cancer.

Cancer treatments that aim to switch on a patient’s immune system to kill tumor cells – so-called immunotherapy approaches – have received much attention and encouraging results in recent years. Now, the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital has devised a new experimental approach that could improve early stages of the immunotherapy development pipeline.

The unit is present in Oslo Cancer Cluster Incubator with a translational research lab, led by Drs. Else Marit Inderberg and Sébastien Wälchli.

 

Researchers in laboratory.

Dr. Sébastien Wälchli and colleagues in the translational research lab in Oslo Cancer Cluster Incubator. Photo: Christopher Olssøn

 

CAR T cells drive new successes

Our immune systems are generally very good at recognizing foreign infectious agents and disposing of them appropriately. However, although our immune systems are capable of recognizing tumors as a threat, cancer cells have adapted mechanisms that enable them to evade the immune response. Immunotherapy is the name given to a range of different approaches that aim to overcome this problem by improving the immune system’s ability to target cancer cells.

One relatively new example of an immunotherapy approach comes from CAR T cells. These are produced by isolating specific cells of the immune system (T cells) from a cancer patient and modifying them so that they become more effective at recognizing and killing cancer cells. The modified T cells are then placed back into the patient so that they can ‘home in’ on the tumor and kill the cancer cells.

Read about related research: T-cells and the Nobel Price

 

Difficult for solid cancers

Current models for testing new CAR T cells aren’t always optimal. Although CAR T cells have shown encouraging results in treating some cancers, particularly the blood cancers leukemia and lymphoma, the development of CAR T cells for non-blood, or ‘solid’, cancers has been more difficult.

In part, this is due to the fact that tumor models currently used in early stages of testing involve two-dimensional monolayers of cancer cells, which do not reflect the complex three-dimensional structure and organization of solid tumors found in patients.

Consequently, CAR T cells that show encouraging results using these two-dimensional models often produce less effective results at later stages of the development pipeline, meaning time, effort and resources are wasted.

 

3D tumor spheroids

To improve the early stages of testing new CAR T cells, Dr. Wälchli’s group has developed a new approach that enables researchers to grow three-dimensional cancer cell structures, or ‘spheroids’, in the lab, and to test the effect that CAR T cells have on killing off these spheroids.

Compared to current two-dimensional methods, the spheroids are more similar in complexity and structure to tumors found in patients.

In a recent publication in the Journal of Visualized Experiments, this group demonstrated for the first time that their spheroid approach has the potential to provide a useful new tool for developing CAR T cells.

They generated spheroids using colorectal cancer cells – a type of cancer for which there is currently no effective CAR T cell therapy available. These cancer cells were modified so that they possessed a molecule on their cell surface called CD19, which is known to be recognized by certain CAR T cells. The researchers then incubated these spheroids with CD19-targeting CAR T cells and used advanced live imaging techniques to track the effect on cancer spheroids.

To help other research groups who would like to start using the spheroid technique, Dr. Wälchli’s publication is accompanied by this video which introduces the approach and provides a basic overview of how it works. The Journal of Visualized Experiments requires a subscription to see the entire video. You can also read a PDF of the article “A Spheroid Killing Assay by CAR T Cells” without a subscription.

 

Successful approach

As expected, shortly after adding CAR T cells, the researchers could detect that spheroids were shrinking due to cancer cell death, proving that their approach successfully measures CAR T cell-induced tumor clearance in a quantitative manner.

Discussing the work, Dr. Wälchli says, “We believe this method can help to answer key questions about using 3D structure tumors as a suitable alternative for testing new immunotherapy approaches.”

The approach now opens the door for testing a range of different target molecules in combination with new CAR T cells targeting those molecules.

 

Fast, affordable and straightforward

Dr. Wälchli believes many researchers could benefit from the spheroid technique. He continues,

“A major advantage to our approach is that it is fast, affordable and straightforward, meaning any research group with the right equipment can test the effect of their immunotherapy on 3D tumors before moving to animal models”.