Transporting patients

Student Jørgen Amdim got to experience life as an orderly on his one-week placement at the Norwegian Radium Hospital.

 

Transporting patients in Norway’s biggest cancer hospital is strenuous both physically and psychologically. “But it’s really good,” said Jørgen Amdim, who is studying the program Healthcare, childhood and youth development at Ullern Upper Secondary School. His one-week placement was at the Transport Section at the Norwegian Radium Hospital. The work experience certainly gave him a taste for more.

Jørgen has previously worked in a nursing home, but he found the work a little tedious. He enjoyed being an orderly though and asked the school if there were any available placements.

An orderly is an attendant in a hospital who is responsible for, among other things, transporting patients, medical equipment and other essential materials. Jørgen spent one week as an orderly at the Radium Hospital and he loved it. He enjoyed it so much that he wants to work there again during the summer of 2019.

Knut Arve Kristiansen, the Head of the Transport Section, has worked at the Radium Hospital for 30 years and praised Jørgen:

“He was a perfect addition to our team, and we are very happy with him.”

 

 

80 km per week

Jørgen enjoys manual labour, which is great if you want to become an orderly. Wheeling around heavy medical equipment or patients in beds and wheel chairs is hard work. Knut Arve explained:

”As orderlies, we’re constantly on the go, and we could end up walking around 80 kilometres on hard floors during a week of work.

“It can be strenuous for the body, so we have to regularly do strength exercises to keep fit,” Knut Arve continued.

Knut Arve only had positive things to say about Jørgen and he hopes that Jørgen will want to return to the Transport Section for a summer job as an orderly.

“Jørgen is a social person and very well liked. This is important for patients when they are transported between examinations and the rooms they are staying in,” said Knut Arve.

Jørgen praises the work environment and especially the warm welcome he received from the other staff.

Jørgen has constantly been accompanied by a colleague from the section during his stay, because he is not allowed to do much on his own when on a placement. If he returns for a summer job, things will be different. Then he will have to work more independently and take responsibility if an emergency should occur while he is transporting a patient.

The orderlies are also responsible for transporting food and medication. To newcomers, the Radium Hospital can appear to be a huge labyrinth, especially outside the wards. The hospital is also currently being renovated, because a new hospital is being built. A sense of direction is therefore essential for anyone finding their way through the building.

 

A future in health

Jørgen does not necessarily want to become an orderly, but sees himself working in healthcare:

“I would really like to work in an emergency room – receiving ill and injured people at the hospital when they arrive in an ambulance. But I think working as an orderly is very exciting too, so I don’t want to exclude it as an option.”

Knut Arve says that a trade certificate is required to work as an orderly and that they currently offer placements for several apprentices in the section. Students need to study Healthcare, childhood and youth development during upper secondary school and then finish a two-year apprenticeship to obtain their trade certificate as an orderly.

”Workdays here are very varied and you meet many different people. It is really fun to talk to people and no two days are the same. I have really enjoyed it.” said Jørgen.

 

Attracting and developing the life science talents of the future is an essential goal for Oslo Cancer Cluster. One way to do that is to take students outside the traditional classroom setting and invite them to work placements and educational lectures. These collaborations between industry and academia give the students a unique insight into the specialist skills needed to become tomorrow’s researchers and entrepreneurs.

  • Find out more about Oslo Cancer Cluster’s school collaboration with Ullern Upper Secondary School.

 

Sign up to OCC newsletter

 

Attracting clinical trials to Norway

Dr. Jon Amund Kyte at Oslo University Hospital (OUH) and Oslo Cancer Cluster share the common goal of bringing more clinical trials to Norway.

 

Jon Amund Kyte is the new Head at the Department of Experimental Cancer Treatment at OUH. He also runs three separate clinical trials and is the leader of a research group at the Department of Cancer Immunology, where he develops novel CAR T cell therapy and conducts translational studies.

Kyte aims to increase the number of and improve the quality of clinical trials in Norway. He says this will contribute to more patients gaining access to novel cancer treatments and to improving the efficacy of cancer therapies.

“The only way to improve cancer treatment is to have clinical trials,” said Kyte.

Oslo Cancer Cluster also wants to bring more clinical trials to Norway to develop innovative cancer medicines. The ambition is to enable faster patient recruitment from across the Nordic region, so that many more can benefit from new treatments, such as immunotherapy.

 

CAR T cells are produced by isolating specific cells of the immune system (T cells) from a cancer patient and modifying them so that they become more effective at recognizing and killing cancer cells.

 

Promising advances

Immunotherapy represents a new type of cancer treatment, which activates the patient’s immune-system to fight off the cancer cells. It gives doctors the opportunity to help patients that previously had limited treatment options. Most types of immunotherapy also cause less side effects than traditional cancer treatments.

“The important point is that immunotherapy can have a long-term effect,” said Kyte.

“Most patients that experience a recurrence or progression of the disease cannot be cured. The traditional treatments only have a limited, short-term effect on them. But immunotherapy may have a long-term effect on the patient – and, in some cases, even cure the disease.”

 

Two big challenges

Immunotherapy may sound like a miracle drug, but researchers still have a long way to go to perfect the treatment for all cancer patients. Kyte highlights two of the biggest barriers that remain.

“One challenge is to develop immunotherapy so that it works efficiently on all types of cancer. The other challenge is to learn how to choose personalised treatment plans: to identify an individual’s biomarkers and find out which treatment will be effective for that specific patient.”

A biomarker is a biological molecule in the patient’s body and these may be used to see how well a patient will respond to a certain treatment. Kyte said that to develop immunotherapy, there needs to be more clinical trials. It is the only way for researchers to find out how to activate an immune response in the patient’s body.

“A big potential for development lies in trying different possible combinations of cancer treatments. In my clinical trials, for example, we combine immunotherapy with immunogenic chemotherapy or radiation therapy,” Kyte explained.

 

Jon Amund Kyte presenting the Clinical Trial Unit.

The Clinical Trial Unit are experts in assisting companies and researchers to conduct clinical trials in Norway.

 

Welcome, companies

OUH has a long history of conducting clinical trials and is an appealing option for both researchers, doctors and companies that wish to initiate their own trials. Kyte welcomes more companies to conduct clinical trials at OUH:

“The more clinical trials that are conducted here by companies, the stronger our clinical research environment becomes and our ability to run our own studies is also strengthened.”

The Clinical Trial Unit in Kyte’s department offers its services to companies that want to run a clinical trial at OUH. They have extensive background knowledge of how the hospital is organised and which approvals are needed to conduct a clinical trial in Norway. They can step in as project coordinator for companies that need help to get their clinical trials up and running.

“We are highly experienced in applying for approvals in Norway. When you run a clinical trial, there are regulations from the Norwegian Medicines Agency and the ethical committee and other governmental agencies. A clinical trial also involves many different parts of the hospital – the departments of pathology and radiology, the laboratories, the infusion unit, the hospital wards and out-patient clinic and the administrative offices that oversee different agreements, data management and biobanking.”

 

Nordic clinical trials

All these administrative obstacles may appear discouraging, but there are many convincing reasons to conduct a clinical trial in Norway.

“The Oslo University Hospital is a good place to run a clinical trial, because in terms of the number of cancer patients, it is one of the largest hospitals in Europe. Norwegian healthcare is also extremely well-organised. Patients are rarely lost to follow-up, because there are no private healthcare alternatives and patients rarely move out of the country,” Kyte explained.

The Clinical Trial Unit is also taking part in the development Nordic Nect, a collaboration to recruit patients from the entire Nordic region to clinical trials. The plan is to have one hospital where the clinical study is conducted and to involve patients from Sweden, Denmark, Finland and Norway. There will then be a population of 25 million people from which to recruit patients, which opens the possibility for larger clinical trials.

“This is a good thing for the companies that want to run clinical trials in Norway. It is also good for the researchers. But most of all, it is good for the patients – who have the opportunity to take part in more novel cancer treatments,” said Kyte.

 

 

 

 

Hands cradling female reproductive system

New collaboration aims to treat cervical cancer

The companies Vaccibody and Roche have started a new collaboration to investigate a drug combination to treat patients with advanced cervical cancer.

 

Both companies are members of Oslo Cancer Cluster and are involved in the development of novel cancer treatments.

Martin Bonde, CEO of Vaccibody, said: “We are very pleased with this collaboration. This is an important study as it explores a novel targeted treatment approach that addresses the high medical need of patients with advanced cervical cancer.”

 

Cervical cancer is the most commonly occurring cancer among women in developing countries and is the second most commonly occurring cancer amongst women worldwide.

 

Vaccibody is a vaccine company that aims to develop and discover new immunotherapies to treat difficult forms of cancer. They have developed a therapeutic DNA vaccine that treats cancers caused by HPV (the human papillomavirus).

 

Cervical cancer is caused by high risk HPV. HPV16 is the type that most frequently causes cancer.

 

Immunotherapy is a type of cancer treatment that aims to switch on a patient’s immune system to kill cancer cells.

 

Roche is a healthcare company that has developed an immune-checkpoint inhibitor. Now Vaccibody wants to test their vaccine in combination with the immune-checkpoint inhibitor designed by Roche.

 

An immune checkpoint inhibitor is a type of drug that blocks certain proteins made by some types of cancer cells. When these proteins are blocked, the “brakes” on the immune system are released and T cells are able to kill cancer cells better.

 

Agnete Fredriksen, President and CSO of Vaccibody, said that the combination of the two drugs build on the positive results seen when their vaccine has been used on patients with cervical cancer. Therefore they now expect to see positive results when they combine the vaccine with an immune checkpoint inhibitor.

 

During the second half of 2019, Vaccibody expects to begin the phase II study, which will involve 50 patients. It will assess the safety of the drug, its ability to invoke a response in the immune system, how the patients tolerate it and how efficient the drug is. The group for this new drug combination involves patients with advanced cervical cancer.

 

Raised NOK 230 million

Vaccibody also raised NOK 230 million (EUR 23.6 Million) in a private placement the same week. The sum was indeed placed all within one day, according to Agnete Fredriksen.

The proceeds from the share sales will be used to conduct the phase II clinical study of the drug combination from Vaccibody and Roche. The money will also go to the preparation of expansion patient groups in Vaccibody’s clinical trials and to generate corporate purposes.

 

For more information, read the press release from Vaccibody.

 

 

Three students experimenting with fruit flies in a lab.

Operation fruit flies

Fruit flies are not only annoying little insects that appear when bananas are overripe. They are also popular research tools for cancer researchers.

 

The four pupils Kalina Topalova Casadiego, Ida Hustad Andresen, Andreas Bernhus and Dina Düring got to experience how cancer researchers look at fruit flies during their work placement in January.

 

“Let’s turn on the gas, and then I’ll put some fruit flies on the pad under your microscope.” Speaking is cancer researcher Lene Malrød who, together with her colleague Nina Marie Pedersen, is responsible for four pupils from Ullern Secondary School on work placements.

 

“Gosh! They’re moving,” proclaims one of the pupils.

 

But not for long. Soon, all the fruit flies are anaesthetised and, eventually, dead; then the pupils are tasked with surgically removing the ovaries of the female flies. It is easier said than done, even with the help of microscopes to enhance the tiny flies. Especially when the operating tools are two tweezers.

Fruit flies are kept in two test tubes

The fruit flies are kept in test tubes.

 

An exciting placement

It is the third day of the pupils’ work placement at the Institute for Cancer Research, located next to the school. For four days at the end of January, they have learnt about cancer research and which methods researchers use in their daily work.

 

“The work placement is not like we imagined,” says Kalina and Ida.

 

“There’s a lot more manual work than I would have thought, and then you realise how important research is through what we do,” says Ida.

 

She is the only one who is specialising in biology in combination with with other science subjects, and she finds this very useful when working in the lab together with researchers. The other three have had to catch up on the reading, but they all agree that it is very exciting.

 

“Yesterday, we learnt a lot about CRISPR, which is a new method for cutting and splicing genes. Media gives you the impression that this is a highly precise tool, but the researchers here say that a lot can go wrong, and that it’s not at all as precise as you might think,” says Ida.

A student looks at fruit flies under a microscope

The students look at the fruit flies under a microscope.

 

From Western Blot to flies

A total of twelve pupils were picked out for this work placement. They have been chosen based on motivation and grades, and they all have a wish to study something related to medicine or science after they finish upper secondary school.

 

The twelve students are divided into three groups with completely different activities and get to learn a number of different research methods. The group consisting of Ida, Kalina, Andreas, and Dina, for instance, is the only group which will have a go in the fly lab.

 

“Am I really supposed to remove the ovaries? I don’t see how,” one of the pupils say, equally discouraged and excited.

 

Andreas, on the other hand, is in complete control. First, he has separated the males and the females with a paint brush. He has then used the tweezers to remove the heads from the females, punctured the bottom to remove the intestines, and finally found the ovaries in the abdomen.

 

Lene gathers all the different body parts for the pupils to look at through a different microscope. These fruit flies are in fact genetically manipulated to glow in the dark – they are fluorescent.

 

If you are wondering why researchers use fruit flies as part of their research, you can read more about it in this article from Forskning.no (the article is written in Norwegian).

 

“It is so much fun to be here, and we are really lucky to get this opportunity,” says Dina on her way from the fly lab to another lab to carry out another experiment.

 

 

The pupils on the work placement have uploaded many nice photos and videos on Ullern Secondary School’s Instagram account – visit their account to see more from the placement.

Photo of Richard Stratford and Trevor Clancy in OncoImmunity.

Machine-learning for immunotherapy

A prestigious EU-grant will advance OncoImmunity’s machine-learning approach to develop personalized cancer immunotherapy.

The bioinformatics company OncoImmunity AS is empowering cancer immunotherapy with artificial intelligence. They use innovative software solutions to guide the discovery of neoantigen-based personalized immunotherapies and biomarkers. What does this really mean?

It means that the software they have developed helps to identify neoantigens, also known as immunogenic mutations, in a patient’s cancer cells. Cancer cells deceive the immune system by looking like healthy cells. But they still express cancer-specific markers, known as neoantigens. (See facts box for explanation.)

Enables personalized medicine
The interesting part about neoanitgens, is that every patient’s tumor expresses a unique combination. This enables truly personalized medicine to be applied, if the correct neoantigens are selected from the thousands of possible candidates in the genome of a tumor. Researchers using this technology can now solve this “needle in the haystack” challenge by analyzing a tumor genome to figure out the right cocktail of neoantigens, for each individual patient, and design a specific vaccine or cell therapy uniquely designed just for them.

Such personalzed immunotherapy can for instance boost the immune system’s response by making the immune system better able to recognize and target the patient’s unique cancer cells.

Faster bespoke treatment
OncoImmunity’s flagship software, the ImmuneProfiler™,is a unique machine learning solution that makes it easier to instantaneously see and accurately select which neoantigens will be responsive in each patient.

It thereby helps biotech companies design neoantigen-based personalized cancer vaccines and cell therapies and enables bespoke treatments to be developed faster. Additionally, the technology allows clinical researchers to select which patients will likely respond to the wide range of cancer immunotherapies currently under development in the field.

In that sense, the OncoImmunity-approach to cancer treatment is exactly in line with Oslo Cancer Cluster’s main goal: to speed up the development of new cancer treatments for the benefit of cancer patients.

Prestigious EU-grant
Horizon 2020’s SME Instrument is a grant that is tailored for small and medium sized enterprises (SMEs). It targets innovative businesses with international ambitions — such as OncoImmunity.

The SME Instrument has two application phases. Phase one awards the winning company 50 000 Euros based on an innovative project idea. Phase two is the actual implementation of the main project. In this phase, the applicant may receive between 1 and 2,5 million Euros.

Oncoimmunity won the phase one project last year. Then, the founders of the bioinformatics company were happy about the opportunity to refine and optimize their machine-learning framework. Their goal has always been to facilitate personalized cancer vaccine design.

Fantastic funding
Now, they have won a considerably larger grant of 2,2 Million Euros that they are going to use to fund a project titled Machine-learning Engine for the Design of personalized Vaccines in Cancer (MEDIVAC).

The SME Instrument grant provides OncoImmunity the opportunity to further customise their machine-learning framework, called the ImmuneProfiler™,for specific vaccine platforms, facilitating the design of safer and more efficacious personalised cancer vaccines.

— We applied for the SME instrument grant as it represents a fantastic funding vehicle for cutting edge, innovative projects with huge commercial potential. The call matched our ambition to position OncoImmunity as the leading supplier of neoantigen identification software in the personalised cancer vaccine market, says Dr. Richard Stratford, Chief Executive Officer and Co-founder of OncoImmunity.

— This opportunity will also help us establish the requisite quality assurance systems, certifications, and clinical validation with our partners, to get our software approved as a medical device in both the EU and US, says Dr. Trevor Clancy, Chief Scientific Officer and Co-founder of OncoImmunity.

SMEs can apply
The SME Instrument is looking for high growth- and highly innovative SMEs with global ambitions. They are developing innovative technologies that have the potential to disrupt the established value networks and existing markets.

Companies applying for the SME Instrument must meet the requirements set by the programme. Please see the SME Instrument website for more information in English or the SME Instrument webpage of Innovation Norway for more information in Norwegian.

Curious about which companies have received the SME Instrument so far? Have look at this database with an overview of all the grant receiving companies in Europe.

Want to know which Norwegian companies received grants from The European Unions research programme Horizon2020 in 2018? Read this article from Innovation Norway (in Norwegian).

Oslo Cancer Cluster  supports members via the EU Advisor Program in collaboration with Innovayt, making them aware of relevant EU- and H2020 funding opportunities and helping them to identify the right calls for their development phase and goals. Oslo Cancer Cluster also assists with partner searches using national and international networks and provides direct support during the grant writing and submission process.

 

Surgery, squash and anaesthesia

Hannah (18) wants to become a doctor. After two days job shadowing doctors and nurses at the Norwegian Radium Hospital, she is even more certain that this is what she wants to do.

If your dream is to become a doctor, it may be a good idea to gain some insight into what the job actually involves before embarking on a long education. But job shadowing a doctor is usually only a possibility if you’re already a medical student.

Truls Ryder is a senior consultant and surgeon at the Norwegian Radium Hospital. He decided to do something about this, and over three days, one theme day that you can read more about here and two days of job shadowing, 18 pupils had the opportunity to experience surgery, morning staff meetings and patient consultations with the best cancer specialists and nurses in Norway.

Hannah Fiksdal is one of these pupils. And I, Elisabeth the journalist, shadowed her on the first of her two days at the Norwegian Radium Hospital. It was a day that neither of us will forget. A day that left Hannah with an even stronger desire to become a doctor.

‘I am incredibly grateful for the chance to shadow two different doctors, and to Truls Ryder for taking the initiative to allow pupils from Ullern to come to the Norwegian Radium Hospital. It gives us some idea of what may interests us before we apply for higher education in the spring. Having had a taste of two different aspects of medicine, I think that surgery and anaesthesiology were probably the things that I found most exciting.’

Hannah Fiksdal.

Hannah Fiksdal starts the day early at the hospital. Photo. Elisabeth Kirkeng Andersen

Tuesday 7 November

07:15 – the Norwegian Radium Hospital, basement level 2 – the corridor outside room AU 230
Sixteen excited pupils, 14 from the natural science and mathematics programme who will be shadowing doctors and two from the healthcare programme who will be shadowing nurses, are standing in a corridor two floors below the main entrance to the Norwegian Radium Hospital dressed in white hospital clothes.

Truls Ryder, senior consultant and prime mover behind the job shadowing scheme, is also here. He quickly reads out where each pupil will be spending the day, and sets of at a brisk pace with everyone in tow.

This is an indication of what is to come.

We go five floors up and then a couple of floors down via the back stairs. On the way, pupils peel off from the group to join other senior consultants and professors who they will be job shadowing today.

Hannah and Tristan are handed over to the anaesthetists at the anaesthesiology department. The department has nine senior consultants, one professor working 50% of a full-time position, and three specialist registrars.

07:34
The morning staff meeting has already started when Hannah and Tristan arrive. Eight doctors and nurses go through the list of patients who will need anaesthesia or pain relief today. Some will undergo surgery in the hospital’s central unit, and some require their services in other parts of the hospital, such as the radiotherapy department.

It is difficult to understand the discussions and information exchanged between the doctors and nurses. The jargon is technical, professional and precise. I wonder how much Hannah and Tristan understand? But it is clear that we have a full day ahead, and that many of the patients are seriously ill with cancer. Some are young, and some patients’ cancer has returned after treatment. Despite the difficult subject, the tone of the meeting is upbeat and friendly. It will remain so for the rest of the day.

08:00
Tristan and Hannah meet their mentors for the day. Tristan will join Senior Consultant Hege for a complicated operation that may take more than ten hours. The patient has a form of cancer that means that the surgeons have to go into the skeleton, among other things.

Hannah will be joining Senior Consultant Anne. Anne has several operations on her schedule today, and Hannah and I will be allowed to tag along and see how she works. Anne’s first patient is having an epidural and then a general anaesthetic. This is also a complicated operation.

Anne and Hege both tell us to be prepared that what we experience may make a strong impression on us and that it is natural to feel unwell. They both share stories about themselves and about medical students who have fainted both during and after visits to the operating theatre.

‘Let us know if you fell unwell,’ is their mantra, ‘and we will help you.’ I think back to the countless shifts I worked at nursing homes during my student days, and hope that they have prepared me for this. But what about young people of 18 and 19 who want to go on to work here?

08:07
Anne gives us green scrubs and a purple cap. We change in her office while she explains that her job can be compared to a pilot flying a plane. There is a lot to do when the operation starts until the patient is under anaesthesia, and then there is a calmer period of observation of the patient, often done by her colleagues, and then she goes back to full focus when the patient wakes up.

We get changed quickly.

8:10
Surgery starts early at the Norwegian Radium Hospital, and the patient arrives at the operating theatre at the same time as we do. Anne explains who Hannah and I are and why we are here. In addition to the patient, there are already five people working here.

Anne jokes and talks to the patient, who she has already met several times before. She explains that she will first be administering a local anaesthetic to the back before putting in an epidural, a form of pain relief given as an injection in the back. After that, a cannula will be inserted into a vein in the patient’s lower arm. When the patient is completely asleep, Anne will place a catheter in the neck that will be used to administer anaesthetics, pain relief, salts and anything else the body may need during an operation.

Anne involves Hannah in the work and explains what she is doing while she works, and she also explains to the patient.

‘It was also really nice to see how caring the doctors and nurses were and how they reassured the patients before surgery. They were very good at creating a pleasant atmosphere to make the patients feel safe despite the seriousness of the situation.’

Hannah Fiksdal.

08:41
Operating theatre 4 is a big, light room, and one of the long walls has big windows with a view of Mærradalsbekken stream and the surrounding forest. The river and the walking path meander side by side. But today, we can hardly see any of this through the darkness and fog.

Anne keeps an eye on the pulse and heart monitor that the patient is connected to, while the theatre nurse is preparing the instruments that the surgeons might need during the operation.

The patient is about to be put under full anaesthesia. Anne and her colleagues place a cannula in an artery in the patient’s lower arm/hand and a catheter in a vein in the neck. Anne is calm and talks to both the patient and Hannah. She explains to the patient that she will soon be asleep. She explains to Hannah what she is doing, and how you can tell the difference between a vein, which carries blood back to the heart: ‘It is darker in colour and pumps slower’ and an artery, which carries blood from the heart: ‘It is light in colour, full of oxygen, and has more force. If I had made a hole in an artery, the blood would have squirted out.’

Despite the number of people working in the operating theatre, the atmosphere is calm and pleasant.

Hannah pays close attention to Anne and asks questions while she is working. Anne is obviously impressed with the pupil: ‘Hannah, you are a tough cookie.’

09:10
The patient has been anaesthetised and is ready for surgery. At this stage, Anne and her colleagues’ responsibility is to ensure that the patient is okay during surgery.

09:40
The patient is in good hands in the operating theatre, so Anne goes to the recovery unit where the patients are taken to recover from the effects of surgery. Patients are closely monitored here. Many complications can arise following surgery, such as bleeding, breathing difficulties, a fall in blood pressure, pain and nausea.

Anne will set up a pain pump for the patient. This is a pump with morphine that Anne programs so that the patient can regulate how much pain relief she needs and wants in the days following the operation. We are allowed to use the staff’s break room while she is programming it. ‘Drink squash with sugar,’ she advises. We do as we are told, and talk a bit about what we have seen and experienced so far. Hannah is pleasantly surprised that she has been allowed into the operating theatre already, and at how open and welcoming everyone is.

‘There was some information about anaesthesia at the theme day yesterday, so I understand what is going on,’ says Hannah, and talks more about her wish to become a doctor.

Anne returns and takes the time to talk to Hannah about medical school and her many years working as an anaesthetist at Haukeland University Hospital. She took up her position at the Norwegian Radium Hospital a month ago, and there is still much that is unfamiliar.

10:01
We return to the operating theatre. There are suddenly a lot of people here, and several surgeons with different areas of specialisation discuss the surgery they are about to perform. It is a complex operation that requires cooperation.

After conferring for a while, the surgeons make a plan. Several of the Ullern pupils on job shadowing come by together with a gastrointestinal surgeon. One of the surgeons takes the time to explain the plan to Hannah and the others.

10:20
A theatre nurse goes through a checklist with the physician, surgeon and anaesthetist Anne. Everything is in order, and the operation can begin. Anne uses all her senses to check that the patient is still doing well.

Two surgeons cooperate on the operation. Hannah stands watching behind them. They talk about this and that while they are working, including the musical Book of Mormon. The actual operation is expected to take five hours. After working and discussing amongst themselves for a while, they ask for another surgeon to be called. They need what is called a ‘second opinion’, or another surgeon’s assessment.

There are suddenly a lot of people in the operating theatre, and several surgeons with different areas of specialisation discussing the case. Truls comes in with a couple of pupils who are shadowing him. Truls confers with his colleagues, and one of the surgeons explains that they are uncertain about the best way to proceed. When the surgeons opened the patient up, they found that the assumptions they had made from the outside were not correct. They have to rethink and make a new plan for the operation.

Anne lets us know that this is very unusual. There are rarely this many surgeons involved in an operation, and they do not often spend this much time discussing what to do. She suggests that we take a break and get something to eat. She has to work, though, both with more of today’s patients and planning for tomorrow, but she thinks that we should eat something.

‘Another thing that surprised me was the doctors’ willingness to show and tell me what they were doing and why. During the first day in particular I learnt a lot that I hope will be useful in my future studies. It was also very clear during the operations that good cooperation is incredibly important in order to achieve the best possible outcome for the patients. Everything from how the senior consultants’ discussed to find the best way to proceed during the first operation to how the two surgeons cooperated without needing to communicate much during the second one.’

Hannah Fiksdal.

11:07 Break room
Since we have green scrubs on, we have crispbread with cheese in one of the break rooms. Otherwise, we would have had to change, leave to eat and then change back afterwards. We also have more squash. With sugar. More pupils come in for a welcome break. Four intense hours have flown by. Two pupils have fainted and woken up again.

Ander Bayer from Oslo University Hospital’s communications department also joins us. He made this video about the job shadowing.

 

11:36 Operating theatre 2
Anne comes to get us. Hannah is going to go with her to another operation. Anne is to put another patient under anaesthesia. Again, Anne explains to the patient and theatre nurses who we are. This patient is also having an epidural in the back, and again, Anne alternates between speaking softly and reassuringly and explaining what she is doing to the patient and Hannah. Fourteen minutes after we entered the operating theatre, the patient is under. Two nurse anaesthetists help Anne by monitoring the patient. The theatre nurses wash the abdomen where the surgeons will open up the patient to remove tumours.

12:15 Operating theatre 4
Anne is needed in operating theatre 4 again, where three surgeons are operating on the first patient. They have now decided what to do.

12:23 Break
We get to take another break and have some squash with sugar, while Anne is preparing a pain pump for the second patient.

12:32
The second patient’s operation is under way. Two surgeons are standing face to face, working together. Anne gets a stool so that Hannah can stand by the patient’s head and watch the surgeons work inside the patient’s abdomen. They have made an incision that is held open by a large tool. There is a smell when the surgeon uses an electrosurgical knife to cut tissue and burn small blood vessels. The cancer they are removing is located around the vein and artery, the blood vessels running to and from the heart and legs. The surgeons show Hannah where they have to be careful. The cancer is removed, and they quickly suture the different layers of tissue before stapling the skin. The theatre nurses perform a routine equipment count. The operation is completed in 40 minutes.

The day in the operating theatre was at least as exciting as I imagined! I had not expected that they would allow us to get so close to the patients and really get a proper insight into what happens during an operation and also how the patients are anaesthetised.’

Hannah Fiksdal.

13:35
Anne returns to make sure that both the patient and Hannah are okay. Anne and her colleagues from the anaesthesiology department wake the patient up. The important thing now is for the patient to start breathing again. Everything goes as it should.

13:40
We accompany the patient to the recovery unit, where the patient will remain for a few hours. Anne’s work with this patient is now finished. We go back to her office to change out of the green sterile scrubs. Anne tells Hannah that she will probably doze off early after such a long and intense day. Anne’s shift will last until half past three, when other anaesthetists will take over for the evening shift. In the hall, Hannah thanks Anne for everything she has taught her and for taking care of her during the day.

14:00
As we leave the Norwegian Radium Hospital through the main entrance, we wonder how the first patient whose surgery we saw in the operating theatre is doing. And Hannah says that she is looking forward to another day of job shadowing tomorrow.

Epilogue
The evaluation results for the theme day and job shadowing were excellent. The pupils and teachers were highly satisfied, and it has already been decided that this will be made an annual event for pupils at Ullern upper secondary school who are considering a career in medicine.

‘Finally, I would like to say that it was very inspiring to see how committed Anne and Anna (Anna Winge-Main, who was Hannah’s mentor on the second day of job shadowing) was to their work and how much they loved their job. It was very clear that they are really dedicated to helping their patients. As Anne said, medical school can be hard and difficult, but once you start working as a doctor, nobody regrets their choice.’

Hannah Fiksdal.

READ MORE:

Days to partner up

Roche is looking for new partners in the innovative Norwegian life science scene. 

Roche is one of the largest pharmaceutical companies in the world with about 800 ongoing clinical trials. Within cancer research and development, this translates into about 500 clinical trials for many different types of cancer. Roche is a member in Oslo Cancer Cluster. 

Read more about Roche’s cancer research

As a part of Roche’s scouting for new innovative collaborations, the company arranged two partnering days in the beginning of December together with Oslo Cancer Cluster and the health cluster Norway Health Tech. Together, we welcomed start-ups, biotechs, academic researchers, clinicians, politicians, innovation agencies, students and other interested parties to a two day open meeting.

Partnering with companies 
The first day was at the at Oslo Cancer Cluster Innovation Park and the second day was at Oslo Science Park.

Growing life sciences in Norway is important to Oslo Cancer Cluster, and the larger pharmaceutical companies’ commitment to working with local stakeholders and local companies is an essential part of the innovative developments in this field.

Such collaborations have the potential to bring more investment to Norway and provide platforms for local companies to innovate, thrive and grow. 

— What we want to do is to strengthen the collaborations and to see even more companies emerge from the exciting research going on in academia in Norway, said Jutta Heix, Head of International Affairs at Oslo Cancer Cluster. 

Partnering with academia
Professor Johanna Olweus from the Institute for Cancer Research at Oslo University Hospital was one of the speakers. She also presented the Department of Immunology and K.G. Jebsen Center for Cancer Immunotherapy for a full auditorium at Oslo Cancer Cluster Innovation Park. 

Established back in 1954, the Institute for Cancer Research at Oslo University Hospital is certainly a well established institute and their Department of Immunology is currently involved in all the clinical trial phases.

— The scientists at the institute realise the importance of collaborating with the industry in order to get results out to the patients, Olweus said, and showed some examples of scientist-led innovations from the institute, including the Department of Cancer Immunology.  

In this story, you can read more about how science from Oslo University Hospital is turning into innovation that truly helps cancer patients.

The e-health meeting place

Oslo Cancer Cluster will co-power the conference E-health in Norway (EHiN).

– This is a natural continuation of the work we do in digitalisation, for a better understanding of cancer and better patient treatment, said Ketil Widerberg, General Manager of Oslo Cancer Cluster, at EHiN 2018.

The Norwegian Ministry of Health and Care Services (HOD) and ICT Norway started a collaboration on creating a national meeting place for e-health. ICT Norway launched the first EHiN conference five years ago. Oslo Cancer Cluster is happy to announce that we are now one of the three stakeholders in this yearly conference, together with ICT Norway and Macsimum.

EHiN attracts a large audience from Norwegian government and business. The speaker in this picture is Christine Bergland, Director at the Norwegian Directorate of eHealth (NDE).

Norwegian e-health  
EHiN 2018 took place in Oslo Spektrum and was the biggest meeting place for actors in the public and private sector working with e-health in Norway. The conference had 150 speakers and 1300 participants. EHiN 2019 will be the 6th year of the conference.

What happened at EHiN 2018?

 — EHiN is an important meeting place for public and private actors, and for academia and business. This is a natural prolongation of the many meeting places Oslo Cancer Cluster is always working to establish and preserve, Ketil Widerberg says.

Digital technologies are part of what drives innovation to the maximum benefit of cancer patients. Widerberg is certain that e-health will change the way we understand and treat cancer in the future.

– E-health is part of the matrix for how we give the right medicine to the right patient at the right time, meaning precision medicine. One example of what we specifically do in this area, is a recent project we have been part of, called PERMIDES.

An e-health success story
From August 2016 until August 2018, Oslo Cancer Cluster together with five other European clusters in medicine and ICT, was managing a Horizon 2020 EU project called PERMIDES. It is a European e-health success story in bringing together biopharma and IT sectors.

D.B.R.K Gupta Udatha at the EHiN conference in 2018. Dr. Udatha was the project manager for PERMIDES at Oslo Cancer Cluster.

D.B.R.K Gupta Udatha is Director (Digital and EU) at Oslo Cancer Cluster. He has been instrumental in PERMIDES and explains why the project has had such a positive effect on the small and medium sized enterprises (SMEs) it has worked with. 

PERMIDES was a project to anchorage digital transformation across SMEs in biotechnology and pharmaceuticals. We aimed to see where the biopharma companies were lacking digital infrastructure and where the ICT companies could bring digital skills to make sure that the biopharma companies were up to date, Dr. Udatha said at EHiN 2018.

The project created matchmaking opportunities between these two different categories of companies and was awarded EUR 4.8 million from the EU’s Horizon2020 programme. It addressed specific challenges for SMEs to go digital with a precision medicine product.

Read more bout the PERMIDES project here.

Let us cooperate on precise health technologies

International cooperation is key to fulfilling our vision of making cancer treatments more precise, and giving the patients new treatments more quickly.

This opinion piece is written by Ketil Widerberg, General Manager at Oslo Cancer Cluster. It was first published in the Norwegian newspaper Today’s Medicine, Dagens Medisin, 30 October 2018. 

The countries in Northern Europe have contributed to developing medical treatments that we today could not imagine living without. From the British discovery of antibiotics to the Danish development of a treatment for diabetes. Once again it is time for Northern European health innovation, this time in the field of health technology. What might the prime ministers from Northern Europe focus on when they meet in Oslo on 30 October to discuss health technology?

They might want to point out concrete and state-of-the-art initiatives from their respective countries. It could be Swedish biobanks, Finnish artificial intelligence, Danish health data, English genomics and Estonian health blockchain. These are exciting initiatives that make medicine more precise. This is particularly important when it comes to cancer because more precise treatments could save lives and limit the late effects resulting from imprecise treatment.

This opinion piece is written by Ketil Widerberg, General Manager at Oslo Cancer Cluster. It was first published in the Norwegian newspaper Today’s Medicine, Dagens Medisin, 30 October 2018.

At the same time, we see the contours of serious challenges arising with more precise medicine, such as each unit becoming more expensive. Smaller patient groups also mean that it is harder to find enough patients to understand the biological processes and the consequences of new medical treatments. As the prime ministers gather in Oslo to discuss health technology and plan the road ahead, it would not be amiss for them to look back in time and find inspiration from another technological development.

Precise through cooperation
In the 1990s, the search engine Yahoo helped us to quality-assure by categorising and being precise when we needed information on the internet. Yahoo thus contributed to the internet changing the world. However, the amount of data soon became enormous and complex, and a never-ending need for resources and experts arose. The traditional categorisation to ensure quality and structure the data became an impossible task.

This is very similar to what is happening in the health field today. We are constantly collecting more data and educating an increasing number of experts. With a few exceptions, every country is now collecting their data in their own registers and using a great deal of resources on assuring the quality of the data. The countries are rightfully proud of their initiatives. In Norway, we are proud of our biobanks and our health registers, such as the Cancer Registry of Norway. At the same time, we need to ask ourselves whether this national strategy really is the smartest way forward.

Let us go back to Yahoo. Towards the end of the 1990s, some engineers in California thought differently about the internet. How about using cooperation as a quality indicator? Instead of categorising, the links between the websites could ensure data quality. This is how Google was born, and we got precision, quality and insight into data that changed the world.

There are different challenges in the health field than on the internet. Data are more sensitive and the consequences for individuals can often be more dire. At the same time, health technology, in many ways, has reached the same point as the internet faced in the 1990s.  We do not have the quantity, the methods for analysis, or the quality to fully exploit the data to gather insight, or for treatment or innovation – yet.

From Yahoo to Google level
One way in which we could tackle the health technology challenges the data present us with is through international cooperation. It is about two things: to gather enough data, and to analyse the data to provide better and more precise treatment. The initiatives so far are promising, but they lack the potential to make the leap from Yahoo to Google.

The Northern European prime ministers can probably acknowledge this. The question is: what can they do? Should they encourage smart young engineers to analyse health data instead of developing the next app? Or should they change the way the hospitals buy technology?

A step in the right direction could be to look at what works best in the other countries. At the same time, we need to avoid new initiatives merely becoming a better horse-drawn carriage. Are there initiatives in existence that are scalable internationally so that we can bring health data up to the next level together? The answer is yes, but it requires visionary initiatives that have not been done anywhere else.

Common clinical studies
An area that the prime ministers will be able to highlight is a Northern European initiative for clinical studies. Together, the countries have a large number of patients, which gives researchers and doctors a better basis in their studies to understand more and provide better treatment. Such an initiative could also use health data from the national health services collected on a daily basis in several countries, known as real world data, instead of eventual clinical studies with patients over several years. This would be both quicker and much cheaper.

The prime ministers might also agree on cooperating on Northern European genetics. For 13 years, we collaborated on mapping our genes in the international  Human Genome Project. Now we need to get together to understand genes and treat the patients. With prioritised funding, genetics will soon be a part of the everyday clinical life in England. We can learn a lot from their experience.

Artificial intelligence
Lastly, the Northern European prime ministers may wish to collaborate on artificial intelligence in the health field. Today, cancer treatment, for instance, often only works on three out of ten patients. Artificial intelligence will change how we understand diseases such as cancer and how we treat the patients. The experiences from Finland of introducing artificial intelligence will help other countries to understand where the barriers are and where help might be needed first.

Oslo Cancer Cluster’s vision is to make cancer treatment more precise and provide new treatments more quickly to the patients. We see that international cooperation is key to obtaining this goal. As a result, we could also discover diseases more quickly and reduce the costs of the national health services. We hope the Northern European prime ministers will delve into these issues when they meet to discuss the health technologies of the future here with us.

By Ketil Widerberg, General Manager at Oslo Cancer Cluster.

Prestigious partnership for Vaccibody

Oslo Cancer Cluster member Vaccibody is entering into a clinical collaboration with the American biopharmaceutical company Nektar Therapeutics.

The aim of the collaboration is to explore positive effects from the combination of Vaccibody’s personalized cancer vaccine VB10.NEO and Nektar Therapeutics cancer drug NKTR-214. Pre-clinical results of the combination are very positive and the collaboration will mark the start of a clinical trial stage.

The clinical trials will include patients with head and neck cancer and initially involve 10 patients.

What is Nektar?
Nektar Therapeutics is not just any company when it comes to immunotherapy. At Nasdaq their market value is set as high as 10 billion dollars.

– For a year now, Nektar might be the most talked about company within immunotherapy and this winter they landed the largest deal of its kind with Bristol Meyers-Squibb (BMS), says Agnete Fredriksen, President and Chief Scientific Officer, in an interview with Norwegian newspaper Finansavisen.

Help more patients
BMS and Nektar started collaborating on the development of the immunotherapy drug NKTR-214, the same drug that is part of the collaboration with Vaccibody, with a potential worth of 3.6 billion dollars.

– That they want to work with us is a nice validation of Vaccibody and makes us able to help even more cancer patients. We hope the combination of our products will lead to even better treatments, Agnete Fredriksen says to Finansavisen.

More about Vaccibody’s cancer vaccine

Nektar and Vaccibody each will maintain ownership of their own compounds in the clinical collaboration, and the two companies will jointly own clinical data that relate to the combination of their respective technologies. Under the terms of the agreement and following the completion of the pilot study, the two companies will evaluate if they will take the partnership to the next stage.

American tech and Norwegian health data

Combining country scale population data with world class computer systems and algorithms will push the boundaries of precision medicine.

This is a story about the unique American-Norwegian collaboration that combines the best health data with the most powerful computers in a pioneer project run by Cancer Registry of Norway and Lawrence Livermore National Laboratory.

Data to screen cancer 
The ongoing project was initiated after a talk on tech between the General Manager of Oslo Cancer Cluster and a Senior Scientist from Lawrence Livermore National Laboratory. Some months later, in San Francisco, a meeting room was filled with some of the world’s best minds on cancer and technology. The Norwegians knew cancer and the Americans knew computing. The outcome was unknown. 

They identified a concrete challenge. Can we see patterns in data to screen cancer more precisely?

The quest resulted in a successful cooperation between Lawrence Livermore and the Cancer Registry in January 2016 where a team from the Cancer Registry started the first project on cervical cancer. If successful, they would potentially identify and screen high risk patients earlier and leave the low risk patients unburdened. 

Now there are two ongoing projects, one on cervical cancer and one on multitask learning for cancer. The goal is to make predictions more accurate and improve precision medicine. 

– If successful we can potentially identify and screen high risk earlier and leave the low risk unburdened. The individual and social impact of such a strategy is significant. This may be the reason why Joe Biden mentioned details from this project at a UN Assembly last year, Widerberg said.

Former Vice President Joe Biden led the American cancer initiative known as the Cancer Moonshot Blue Ribbon Panel. Two years ago, when the collaborative project between Norway and the USA had just started, the Blue Ribbon Panel released a report describing ten transformative research recommendations for achieving the Cancer Moonshot’s ambitious goal of making a decade’s worth of progress in cancer prevention, diagnosis, and treatment in just 5 years.

One of the ten recommendations was to expand use of proven cancer prevention and early detection strategies.

The major research questions
– One of the major research questions right now is How do we design the optimal screening programs? Another is how to actually take advantage of the registry data that we have, said Giske Ursin, Director of the Cancer Registry of Norway.

In Norway, and similarly in the other Nordic countries, we have registries on various diseases, pregnancy/births, vaccinations, work history/unemployment, income and much more. We have data sets dating from the 1950s. That is unique in the world. 

– If you look at enough data, you can find interesting links that can be explored in the clinical world or elsewhere. For instance; how do other diseases affect cancer diseases? We need international expertise to cover areas we are not experts on ourselves, she said, showing a picture of one of the super computers at Lawrence Livermore.

Cancer and national security
Lawrence Livermore National Laboratory is a national security laboratory and part of the U.S Department of Energy. The laboratory has over 5000 employees, of which at least half are engineers and researchers.

– We have the mandate from the government to push the forefront on subjects like bio security. Precision medicine is alined with the bio security mission, but it is even more relevant to the super computing research mandate. What are the next types of problems that will move this forward? Biomedical data complexity. That is why we are in this, Ana Paula de Oliveira Sales from Lawrence Livermore National Laboratory said in her presentation. 

Some ingredients of the project on cervical cancer is to improve cancer outcome prediction by combining disparate cancer types. The preliminary results are encouraging.

You can read more about the research projects of Cancer Registry of Norway on their website.

Break down barriers
John-Arne Røttingen, CEO of the Research Council of Norway, gave a talk on how collaborations between the Nordic countries and other countries are important for population based clinical research and health research.

– Personalized medicine is full of promise and we want to contribute to this progress, but we cannot do this only with our data. We have to collaborate with other countries and with different fields of research, he said.

One important country in that respect is of course the USA.

Kenneth J. Braithwaite, U.S Ambassador to Norway, talked about the opportunities with the Norwegian databases in a meeting in the Oslo Cancer Cluster innovation park 20 September 2018.

— I have learned the past few years that data is king, and we need to wrap our arms around this. I think there is a responsibility from the governments to begin to break down the barriers and truly find a cure to cancer. That’s what we are up against, said U.S. Ambassador to Norway Kenneth J. Braithwaite, who is Rear Admiral of United States Navy (Retired).

— As we say in the Navy, full speed ahead!

The next wave in cancer immunotherapy

What is driving the next wave of innovation in cancer immunotherapy?

This was the question the experts tried to answer in the oncology session of the conference Nordic Life Science Days in Stockholm 12 September.

International experts from pharma, biotech, academia and the investment community discussed how different approaches to innovative cancer treatments could address challenges and shape the next wave of innovation in cancer immunotherapy, also known as immuno-oncology.

They touched upon approaches such as big data, personalized medicine, new targets and lessons from neuroscience.

Over the past few years, the rapid development of novel cancer immunotherapy approaches has fundamentally disrupted the oncology space. Cancer immunotherapy has not only become a key component of cancer therapy, but it has also reshaped priorities in oncology research and development (R&D) across the industry, with unprecedented clinical success in certain cancer types continuing to fuel record investment and partnering activity.

As of today, more than 2.000 immuno-oncology agents, including checkpoint-inhibitors, vaccines, oncolytic viruses and cellular therapies are in preclinical or clinical development.

Read more about the cellular therapy research of Oslo Cancer Cluster members Oslo University Hospital and Zelluna.

Why so little effect? 
Despite all of this promising research, only a minority of patients benefits from effective and durable immuno-oncology treatments. Why is this happening?

Part of the answer is found in resistance or unexplained lack of response. This could be addressed through a better understanding of optimal timing of therapy, better combination therapy design, or improved patient selection. Another part of the answer lies in a lack of novel targets and of an overall better understanding of specific immune mechanisms. This lack of understanding is becoming a roadblock to further advance in this research space.

What can the experts do about this? It turns out they have several approaches. Two of the main ones include big data and turning so-called cold tumours hot.

Big data will expand
“We believe that this can be changed by adding deep and broad data from multiple sources”, said Richa Wilson, Associate Director, Digital and Personalized Healthcare in Roche Partnering.

“We use the words meaningful data at scale, that means high quality data with a purpose: to answer key scientific questions”, she said at the session.

These data will continue to evolve from clinical trials and aggregated trials and registries and in the future from real time and linked data. There was about 150 exabytes health data in 2015 and in 2020 it is expected to grow into 2300 exabytes, mainly from digital health apps and scans from the hospitals, Oslo Cancer Cluster member Roche presented.

Hot and cold tumours 
Emilio Erazo-Fischer, Associate Director of Global Oncology Business Development at Boehringer Ingelheim explained the cold and hot tumours and how the cold tumours can be turned hot and thus open for cancer immunology treatment. It is well explained in this short film by Oslo Cancer Cluster member Boehringer Ingelheim

Martin Bonde, CEO of Oslo Cancer Cluster member Vaccibody also presented how they try to turn the cold tumours hot.

The Norwegian company Vaccibody is a leader in the field of cancer vaccines and they are very ambitious. They currently have a trial for melanoma, lung, bladder, renal, head and neck cancer.

The impact of stress
Erica Sloan is the group leader of the Cancer & Neural-Immune Research Laboratory in Monash University in Australia. She gave a talk on how neural signalling stops immunotherapy working. The researchers at Monash University have led mouse studies where the nervous system is stressed. They show that immunotherapies fail unless peripheral neural stresses are excluded.

The threat of a cancer diagnosis is stressful, as are most certainly cancer and cancer treatments. The tumour micro environment inside the cells can hear the stress signal, that is adrenalin.

“So what can we do about it?” Erica Sloan asked, before she answered:

“Treating with beta blockers. Blocking neural signalling prevents cancer progression. It also has an effect on immunotherapies.”

Erica Sloan is the group leader for the Cancer & Neural-Immune Research Laboratory in Monash University, Australia. She gave an introduction to the effect of neural signalling on tumour cells during the NLSDays in Stockholm 2018.

“Could stress be responsible for non responders?”, the moderator Gaspar Taroncher-Oldenburg from Nature Publishing Group asked her in the panel. 

“Absolutely, neural signalling can be responsible for this. And the exciting thing with data sharing here is that it can allow us to see and understand the rest of the patients’ biology. We need to look more at the patients’ physiology and not just the tumour biology” she said. 

Promising treatment for late stage cancer

MetAction has used targeted gene therapy to give patients with metastatic cancer a treatment method. The future of this work is now in danger.

Late stage cancer is still a real challenge for modern medicine. The gene mutations multiply and are difficult to control. However, the research group MetAction, based at the Oslo University Hospital, has used targeted gene therapy to give patients with metastatic cancer a treatment method.

The results have been very promising, but all the good work could go to waste.

Targeted Gene Theraphy has been described as one of the new important weapons in the fight against cancer for two decades now. Norwegian hospitals still lack an infrastructure to facilitate this type of treatment.

Meet MetAction
MetAction started as a research project in 2014 to explore the possibilities of targeted gene therapy, but ended in 2017 because of a lack of funding. The project made use of modern genetic tools, combined with knowledge across the cancer treatment spectrum, to help patients with late stage cancer.

Cancer Specialist Anne Hansen Ree explained how it all started at this year’s Cancer Crosslinks in January.

– We had this idea to use targeted gene therapy for people who suffered from late stage cancer to deal with the types of mutations common for this group, she said.

With this idea as a backdrop they started developing a research project.

– To do this we had to put together quite a large project with a lot of new diagnostic tools, as well as specialists with the knowledge to interpret the data and find patients that were willing to join the study, she explained.

During the project, MetAction found that they could give at least half of the patients in their study a treatment based on the genetical data collected.

A patient group previously labelled “terminally ill” could actually receive effective treatment.

You can read about the cancer patient Grete and how she was successfully treated with late stage stomach cancer by MetAction in this article in the Norwegian newspaper VG (in Norwegian).

Knowledge in danger
All the knowledge and competence the MetAction group has established in this field is now in danger of disappearing.

– It’s sad to see that all the good work from this project could vanish and that a patient group loses out on a possible treatment method, said molecular pathologist and doctor Hege Russnes.

Both Russnes and Ree emphasized that the research group both want to and should continue.

Join the debate
Last year at the yearly political get-together event “Arendalsuka” Oslo Cancer Cluster and meeting-co-hosts posted the question: “Why can’t we have a second-opinion board for patients that have run out of options, like in Denmark?” Now that a Norwegian Expert Panel is about to come to fruition–as promised by the Norwegian Minister of Health, Bent Høie–it presents an excellent possibility to include personalized gene treatment as a viable treatment option for patients with late stage cancer. We will discuss this possibility during our meeting in Arendal next week.

8 AM Wednesday 15 August, MetAction will present their project and we will discuss possibilities for future cancer treatment as part of this year’s Arendalsuka. Come and join our event there.

Or simply follow our live stream on Facebook!

Ullern Student With a Career in Medicine

Aksel Stien graduated from Ullern Secondary School in 2011. Today he is a physician working on his specialty subjects at Oslo University Hospital. Aksel has always wanted to become a physician and the foundation was already in place at Ullern. He learned things from his deployment at The Norwegian Radium Hospital during his upper secondary days that he has yet to learn from his medicine studies.

A warm summer afternoon Aksel is at an Adamstuen café. It’s four a clock and his workday at Ullevaal is done. Aksel is currently working at the department of Gastrointestinal Surgery at Ullevaal Hospital, a part of his specialization and continuing education as a doctor.

— Recently I worked at the emergency services at Grünerløkka for three months, a time I experienced as both exiting and hectic. However, I think it is interesting working at Gastrointestinal Surgery as well.

At Ullern he specialized in natural sciences and he has only good things to say about the teachers.

— I didn’t have one inadequate teacher in all my years at Ullern. Quite amazing really and that contributed to my good grades. Of course, I also worked hard to be able to enroll as a medicine student in Bergen right after graduation.

Very Interesting Deployment
Aksel finished his studies in 2017 and can now call himself doctor. However, a doctor is never fully educated. He is currently undergoing part one of his continuing education. And when he looks back, he remembers well his years at Ullern were he participated in two work deployments at the Norwegian Radium Hospital.

— The deployments motivated me. I learned things I haven’t experienced later, like laboratory work and advanced cell biology. The best thing is that my passion for natural science was rewarded and encouraged. It felt fun doing stuff that was outside of the straight forward curriculum, says Aksel

Aksel was both deployed at a group led by Kristian Berg working on photochemical internalization and how it can be used to kill cancer cells, and additionally at dep. of Radiation Biology were the students learned about skin cancers and the danger of tanning booths.

Uncertain on Future
After finishing the first part of his continuing medical education, he will start the second part that decides the type of doctor he will become at the end, what field of expertiese he will delve deeper into. However, exactly what type of doctor he wants to become he hasn’t decided yet.

— Many of the different types of specializations are fun. Right now, gastrointestinal surgery is very exciting, but I don’t know. It will be a difficult choice, says Aksel.

Aksel has wanted to become a doctor for a long time and thinks it is an exciting profession combining knowledge of the natural sciences, medicine and the body with human contact skills.

— The life of a physician is very diverse, and it is very rewarding often seeing the results of your hard work immediately, says Aksel.

Aksel is tempted to go into research or maybe combining patient treatment with research. Treating patients and doing research is a quite common combination and Aksel has already participated in several research projects.

Do What You Find Fun!
Aksel is a believer in personal motivation. It is important that each graduate student go on to study what they are interested in and excites them.

— If you chose something that motivates you it’s much easier working hard because doing that extra work comes so naturally, says Aksel.

He thinks it is very understandable that natural sciences lover choose the medical profession after upper secondary.

— It’s a natural choice because of the job security and the exciting diversity of the profession. You can work with people, do research or work with patients. As a career it has it all and offers you a choice whatever you do, says Aksel.

— Personally, I have wanted to work with medicine since I was a toddler and I’m very happy about the career path I have chosen.

AI Speeds Up Pharmaceutical Testing

Oslo Cancer Cluster member Immunitrack has landed investments worth millions. The money will be used to develop a computer program that can predict how the immune system will react to different substances.

Already Immunitrack, co-founded by Stephan Thorgrimsen and Sune Justesen, is offering contracted research to the pharmaceutical industry predicting how the immune system react to different pharmaceuticals, by producing reagents that can be used to examine the immune systems reaction.

New AI in The Making
When scientists discover promising substances they think can be developed into medicine for future treatments, only a small percentage will prove to have an effect after testing. The testing process is important, but at the same time expensive, time and resource consuming. What if a lot of this testing could be done virtually by a computer program? This is what Immunitrack want to offer with their new AI- technology.

The new investment will take this further and enable the company to boost its production and analytical capabilities. The investment will enable increased efforts in the development of a new best in class Prediction Software using artificial intelligence (AI). The software is seen as a vital cornerstone for applying the technology from Immunitrack in large scale projects within cancer treatment and precision medicine.

The applications of the new AI platform are multiple: The technology increases vaccine potency, speeds up the development of personalized cancer vaccines and remove negative immunological effects. Additionally, it enhances precision medicine efforts by improving patient profiling and treatment selection.

And everything is really moving fast for Immunitrack.

— Until September last year it was only the two of us that stood for everything. Production, marketing, you name it. Then things started happening for real and now we have employed 4 new colleagues, says Stephan Thorgrimsen.

The Investor
The new investment is from Blenheim Capital Limited. They are a diversified investment company focusing on geographically, commercially and technologically frontier companies and projects.

The investment in Immunitrack ApS with its emphasis on transforming market proven immunology-based skill set into a commercially viable AI solution matches Blenheim’s investment profile.

About Immunitrack
Immunitrack aims at becoming a world leader within prediction and assessment of biotherapeutic impact on patient immune response. The company has until now provided services and reagents to more than 70 biotech companies worldwide, including 6 of the top 10 Pharma companies.

Immunitrack was founded in 2013 by Sune Justesen and Stephan Thorgrimsen. Sune Justesen brings in experience from more than a decade of working in one of the world leading research groups at the University of Copenhagen. The company started commercialization of its products in 2016, and has grown its staff from 2 to 6 within the last 8 months.

The Future Norway: Ketil Widerberg on Tech and Cancer

Our General Manager Ketil Widerberg visited the podcast People creating the future Norway (De som bygger det nye Norge) hosted by Silvija Seres and Oslo Business Forum.

Ketil and Silvija discussed important issues like: Is it possible to make cancer a chronic disease? And how do you really create medicine that is tailored for each individual? And many other important topics. Have a listen!

Listen to the podcast HERE (In Norwegian).

Enjoying a Meteoric Career as a Researcher

Former Ullern upper secondary school student Simone Mester is enjoying a meteoric career as a researcher. Her research is aimed at making cancer drugs more efficient by getting them to stay longer in the body. But how did she end up here, and what advice does she have for upper secondary school students who are about to choose what educational path to take?

Simone Mester is 25 years old. Before studying molecular biology and being taken on as a researcher at the University of Oslo (UiO), she took natural science subjects at Ullern upper secondary school. She was one of the first students to be offered a place on a work placement programme under the auspices of Oslo Cancer Cluster. Her placement was at the Institute of Clinical Medicine where she worked at both the Department of Tumor Biology and the Department of Radiation Biology.

But choosing molecular biology after upper secondary school was not an easy choice.

‘I felt unsure at the time. I remember thinking a lot about what jobs would be available to me after studying molecular biology. At the same time, the work placements had given me an idea of what it means to work as a researcher. Without that, I would never have dared to choose molecular biology, but would have gone for medicine instead,’ says Simone Mester.

Inspired by Inger
Now, just five years after celebrating her graduation from Ullern, Simone is a researcher at the University of Oslo (Department of Biosciences and Department of Pharmacology) and at Oslo University Hospital (Department of Cancer Immunology) as a member of Jan Terje Andersen and Inger Sandlie’s research group. As chance would have it, Professor Inger Sandlie is a member of the board of Oslo Cancer Cluster and is one of the founders of two enterprises working on a new form of cancer treatment.

‘Inger was one of my lecturers when I took my bachelor’s degree, and I found her very inspiring. She has won several innovation awards and started up businesses. I like working on research that is complex but understandable, and that can form the basis for new and better treatment for serious illnesses,’ says Simone.

So it is no great surprise that Simone’s research project focuses on developing better cancer drugs that stay longer in the body. This enables the drug to kill more cancer cells at lower doses, which means that there are also fewer side effects. This was also the focus of her master’s thesis.

‘My master’s thesis was well received. It opened the door to Inger Sandlie and Jan Terje Andersen’s research group, but chance played a part as well, of course,’ says Simone modestly.

Chance always plays some part, but Simone has no reason to be modest. She is not where she is today as a result of chance alone.

Do not choose the most prestigious fields
Simone is very happy that she did not choose a subject that is better known than molecular biology in terms of status and job opportunities. She encourages upper secondary students to think about what they are good at and what they think is fun when making the hard choice of which direction to take after upper secondary school.

‘I feel that it’s a general problem that so many young people choose high status professions such as law, engineering and medicine, rather than looking at other possibilities. When I tell people that I’m a molecular biologist, they don’t understand what it is, and they don’t ask either, but that’s OK. It’s more important to choose something you think is fun, because that means you will also perform better, even though it’s hard work,’ says Simone.

She adds:

‘And if you think upper secondary school is tough and that you have to work really hard to get good grades, then I can tell you that university is much tougher. That means that it’s really important that you choose a field you’re passionate about,’ says Simone.

She encourages students to talk to their subject teachers about possible career choices.

‘I had several good biology teachers at Ullern, and was considering studying biology. However, Ragni, one of my teachers, was adamant that I should focus on molecular biology since I was particularly good at it,’ says Simone.

She has never regretted her decision. When we ask her what fascinates her about molecular biology, she says:

‘I’m working on such a tiny scale with things like DNA, protein and cells, the building blocks for all life. It’s like a different universe, and, in the beginning, it was hard to understand how I fitted in,’ Simone says.

But after listening to Inger’s lectures and later becoming part of her research team, she is sure about her decision.

The SPARK Winner And the Prime Minister
Simone completed her master’s degree in 2017, by which time the university had already granted her application for innovation funds to continue her research. In addition, she is the youngest person at the university to be accepted for ‘Spark Norway’, an innovation programme at UiO:Life Science, which Oslo Cancer Cluster has helped to establish.

‘My SPARK project is an extension of the project I began during my master’s studies. Of all the proteins I’ve created, I’ve found one with the ability to stay in the blood stream for a very long time. That means that it doesn’t break down so quickly. At the same time, a lab in the Netherlands has developed several new antibodies that can effectively kill cancer cells. The problem is that the antibodies break down quickly in the body. So now we’re trying to combine these antibodies with our unique technology, in the hope of tailoring the next generation of cancer drugs,’ says Simone.

The aim of the SPARK innovation programme is to give young researchers a chance to further develop their own ideas in health-related life science for the benefit of patients and society at large. And Simone’s project really fits the bill in that respect, something a lot of people agree with.

When Prime Minister Erna Solberg opened the new incubator ShareLab at the Oslo Science Park in March this year, a competition was organised between the SPARK participants. And guess who won?

None other than Simone.

Ragni Fet on Simone:

Ragni is a biology teacher at Ullern upper secondary school. Simone Mester was one of her students for all three years: first in natural science and then in biology for two years. Simone was part of Ragni’s first cohort of students nine years ago.

‘I remember Simone very well, and we have actually been in touch after she graduated from Ullern upper secondary school. She struggled a bit to stay motivated while taking her bachelor’s degree in biology, and I talked to her about how that was completely natural and that things would improve at master’s level,’ says Ragni.

And it’s safe to say that the pep talk worked.

Ragni was also the one who recommended Simone to study molecular biology.

‘Many upper secondary school students tend to have a too narrow perspective when it comes to choosing an education and profession. I’m trying to expand their horizons, and I strongly recommended that Simone study molecular biology rather than medicine, which she was considering at the time,’ says Ragni.

She is both pleased and proud that Simone is doing so well as a researcher at the University of Oslo, but she is not the least bit surprised.

‘Simone was very good at biology and really grasped the subject in her final year. I seem to remember giving her the best grade in biology. It’s great that she’s doing so well now. I’m really rooting for her. She has everything it takes to succeed, from intelligence to social skills and work capacity,’ says Ragni.

She is really pleased that the work placement offered to Ullern students was the decisive factor in Simone’s decision to go for a career as a researcher.

‘Students and society at large are very under-informed about what research is and what being a researcher entails. When students praise each other, they say “What are you, a brain researcher or something?”, so they clearly think you have to be extremely clever to become a researcher. Most people find research diffuse, so it’s great that some students can go on work placements and experience first-hand what research is and what a researcher does,’ says Ragni.

Creating One Cancer Vaccine Per Patient

Oslo Cancer Cluster member Vaccibody is making headway with their cancer vaccine technology. Now they are ready with clinical trials involving 40 patients in Germany, the first patient is already enrolled.

 

Neoantigens Reveals Cancer Cells
Cancer is famous for its ability to deceive, appearing to the immune system as normal tissue while wreaking havoc on the body. But what if cancer cells could be revealed with subtle but unmistakable characteristics that revealed their true nature?

This revealing clue exists and is called neoantigens, which are mutated (or changed/altered) proteins found only in cancer cells. This is the science behind what Vaccibody and Agnete Fredriksen is currently doing, working to develop vaccines that use neoantigens to help patients’ own immune systems recognize and fight cancer tumors.

— I dare to say that this is quite unique. Each vaccine is thoroughly customized for each individual cancer patient. One vaccine per patient! What we do is conduct biopsies and blood tests to reveal each patient’s unique set of neoantigens and with our technology we have the ability to create a potent individualized vaccine in a relatively short time at reasonable cost, says Agnete B. Fredriksen, President and Chief Scientific Officer at Vaccibody.

Extra Effective With Checkpoint Inhibition
The Vaccibody researchers analyze individual tumor genomes and the patients’ immune systems to select an optimal mix of neoantigens.

— We can do that in a few days because of modern technology. Then we monitor and record the changes we think the immune system will react to and include them in the personalized vaccine. The neoantigen technology is then combined with so called checkpoint inhibitor therapy, which stops tumors from suppressing immune-system activity — to make the vaccine extra effective.

With this personalized medicine approach, each patient receives a unique DNA vaccine, in combination with standard of care checkpoint inhibitor therapy.

Vaccibody has also reached the front page of VG! Read the story here. (In Norwegian)

Clinical Trials in Germany
In the upcoming German clinical trials the vaccine will be tested on patients with locally advanced or metastatic non-small cell lung cancer, melanoma, renal, bladder or head and neck cancer.

— Our technology is very flexible and it can record a number of different changes. The vaccine is therefore applicable as a treatment for many different kinds of cancers. The ones included in the trial are chosen because they contain a high number of mutations and changes creating a good basis to create a neoantigen vaccine.

During the trial Vaccibody will check if the vaccine is safe and without side effects.

— We really think it is based on previous experience with this platform! And we will of course check if the vaccine has the expected immune response and investigate signs of clinical efficacy, says Fredriksen.

Bekjemper kreft med gentilpasset behandling

Gentilpasset behandling har siden begynnelsen av 2000-tallet blitt beskrevet som et av de nye, viktige våpnene som kan bekjempe kreft.

Hør forsker Hege G. Russnes og professor Anne Hansen Ree, her fra Cancer Crosllinks i januar i år, fortelle om deres forskningsprosjekt MetAction, og hvordan de tar i bruk gentilpasset behandling for å gi et behandlingstilbud til en pasientgruppe som har manglet det tidligere. Nå avsluttes prosjektet og du kan høre her hvorfor forskerne synes det er både feil og trist.

Forskningsprosjektet, som varte fra 2014 til 2017, ble ledet av Ree, kreftforsker og professor Gunhild Mari Mælandsmo, molekylærpatolog og lege Hege Russnes ved Oslo universitetssykehus, samt kreftkirurg og lege Kjersti Flatmark.

I forrige uke fikk de også forsiden på VG. Og det med god grunn: Ved bruk av genterapi og tverrfaglig kompetanse gir de hjelp til nye pasientergrupper og løfter norsk kompetanse innen gentilpasset behandling.

Les saken i VG her.

Vessela Kristensen Receives Cancer Research Award

Professor Vessela Kristensen is awarded King Olav V’s Prize for Cancer Research for her breast cancer research.

A Prestigious Award
The prize is one million NOK and will be presented to Kristensen by his Majesty King Harald V on behalf of the Norwegian Cancer Society, April the 16th.

Kristensen is a Professor at the University of Oslo, and associated to the Department of Clinical Molecular Biology at Ahus and Institute for Cancer Research at Oslo University Hospital.

– This is overwhelming! A Warm thanks to the Norwegian Cancer Society and all the many researchers that I have teamed up with and that have made my projects possible to complete, Kristensen says in a comment to the Norwegian Cancer Society.

King Olav V’s Prize for Cancer Research is regarded as the most prestigious award within cancer research in Norway, and is awarded by the Norwegian Cancer Society to researchers that have excelled in their field of research for a substantial period.

The Genetics of Breast Cancer
Kristensen receives the award for her research on how genetic variations in breast and ovarian cancer influences the two diseases. The goal of her research group is to identify biomarkers that can lead to early patient diagnostics, as well as better patient care and prognosis. With the help of advanced analytic models dealing with lots of data, she wants to tailor effective treatments to each breast cancer patient.

The Cancer Society emphasizes innovation as a main characteristic of Kristensen’s research and underlines her substantial reputation in both national and international scientific communities.

– This year’s winner represents proven research! That is why she has received research funds from the Norwegian Cancer Society previously. Now we give her this prize to stimulate further innovative research, says General Secretary of the Norwegian Cancer Society, Anne Lise Ryel in a press release.

10th Cancer Crosslinks: Precision Treatment Reviewed

For the tenth time the cancer experts gathered to share knowledge and ideas at Oslo Cancer Cluster Innovation Park. Cancer Crosslinks 2018 presented a diverse program covering themes from immuno-oncology to cachexia, to big data.

 

Cancer research is changing rapidly. Immunotherapy and precision medicine has revolutionized cancer treatment. This year’s Cancer Crosslinks took a closer look at developments over the last decade, and highlighted “Precision Treatment: Exploiting Recent Advances – Fast and Furious?”.

Weber Gazed into the Crystal Ball
The leading immunotherapy expert professor Jeffrey S. Weber visited Cancer Crosslinks for a second time. Weber has worked with immunotherapy for 30 years.  He provided an overview on recent advances. He shared new data showing that the combination of a certain vaccine and a type of immunotherapy called Checkpoint inhibitors, are especially effective against cancer. He also gazed into the crystal ball and made predictions on the future of cancer treatment. Weber is optimistic and thinks there are several promising combinations of precision treatments on the horizon.  He believes we can hope for a survival rate of 70-80 percent for people with certain cancers.

A Fiber Diet is Recommendable
Professor Laure Bindels from Belgium explored the theme of Microbiome, Cancer and Cachexia. Diet can be an important tool to fight cancer and cancer symptoms. Her research on mice indicates that changing to a fiber-rich diet can prevent undernourishment and increase the survival rate for cancer patients.

Hege Russnes and Anne Hansen Ree introduced us to the MetAction project where they conduct extended personal diagnostic testing to give cancer patients better and more effective treatment.

From the USA, we were introduced to precision treatment of gynecological cancer from Douglas A. Levine.  He was followed by Professor Andreas Engert, who raised the hot topic of establishing joint European guidelines for treatment across Europe for hematological cancer.

A Big Maybe to Big Data
The last speakers of the day where Assistant Professor Marcela Maus from Harvard Medical School, and Elisabeth Wik and Marc Vaudel from the University of Bergen. Professor Maus explained the use of CAR T- cells in cancer treatment. CAR-T Cells are T-cells with modified receptors to make them more effective against certain diseases, in this case cancer.

Elisabeth Wik and Marc Vaudel, with backgrounds from cancer research and computer science, discussed the use of big data in cancer research and treatment. Will big data revolutionize cancer treatment? The answer is maybe. We don’t know yet, it has potential.  We need to continue exploration, research, and collaboration to find out.

Download the Presentations
For those of you who missed the event or would like to revisit:

You may watch most of the presentations here.

You can download presentations from the meeting here:

Opening and Welcome with Jutta Heix from Oslo Cancer Cluster and Anne Kjersti Fahlvik, Executive Director Innovation, The Norwegian Research Council.

Jeffrey S. Weber. Opening Keynote: Cancer Immunotherapy – The Journey So Far and Where We Are Heading.
Jeffrey S. Weber, Professor, Deputy Director and Co-Director, Melanoma Program, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, USA.

Laure Bindels. International Keynote: The Microbiome, Cancer and Cachexia.
Laure Bindels, Louvain Drug Research Institute, Université catholique de Louvain, Belgium.

Hege G. Russnes and Anne Hansen ReeFrom Feasibility to Utility in Precision Medicine – Experiences from the first Norwegian Study of NGS-Based Therapy Decisions in Advanced Cancer.
Hege G. Russnes, Senior Consultant and Researcher, Oslo University Hospital, Norwegian Radium Hospital, Norway
Anne Hansen Ree, Professor, Akershus University Hospital, University of Oslo, Norway

Douglas A. Levine. International Keynote: Precision Medicine for Gynecologic Cancers – Opportunities and Obstacles.
Douglas A. Levine, Professor, Director of Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center & Head, Gynecology Research Laboratory, NYU Langone Medical Center, New York, USA.

Andreas Engert. International Keynote: Roadmap for European Hematology Research and Hodgkin Lymphoma: (Immuno)therapy, Late Effects and the Way Forward.
Andreas Engert, Professor for Internal Medicine, Hematology and Oncology, University Hospital of Cologne, Germany.

Marcela V. Maus. International Keynote: The Next Generation of Engineered T-cells for Immunotherapy of Hematological and Solid Tumors.
Marcela V. Maus, Assistant Professor, Harvard Medical School & Director of Cellular Immunotherapy, Cancer Center, Massachusetts General Hospital, Boston, USA.

Marc Vaudel  and Elisabeth Wik: Making Sense of Big Data for Oncology Patients – Vision and Reality
Marc Vaudel, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital and KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
Elisabeth Wik, Centre for Cancer Biomarkers, University of Bergen and Department of Pathology, Haukeland University Hospital, Norway

KUR: En reise langs det elektromagnetiske spekteret

I kursserien Kompetanseutvikling i realfag (KUR), spør vi denne gangen: Er det farlig med stråling?

Hvordan påvirkes vi av trådløse nettverk?  Hvordan behandler man kreft med ioniserende stråling?

Stråling er en del av hverdagen vår på mange måter.  Det elektromagnetiske spekteret er også en gjenganger i mange læreplaner, både grunnskolen og i videregående skole.  Denne kurskvelden har det overordnede temaet “det elektromagnetiske spekteret”, og hvordan stråling påvirker liv og helse.

Vi tilbyr for første gang også en omvisning i strålingsbygget på Radiumhospitalet!

Hva er KUR? 

KUR er en serie med seminarer for lærere i videregående skole. Seminarene arrangeres av Ullern videregående skole og Oslo Cancer Cluster og foregår om ettermiddagen. Målet er å lære noe nytt, spennende og relevant for undervisningen sammen med både realister og andre lærere. Seminarene innledes med et foredrag av en forsker som forteller om ny forskning innen sitt felt.

Program

  • Registering, servering av mat og drikke, og mingling med gode kollegaer
  • Velkommen
  • Hvordan bruke matte og fysikk i kreftbehandling?
  • Kaffe og mingling
  • Høyspentlinjer og trådløs kommunikasjon-farlig eller ikke?
  • Q & A
  • Omvisning på avdeling for medisinsk fysikk på Radiumhospitalet

 

Opplegget er gratis, men du må melde deg på slik at vi vet hvor mange som kommer, og dermed kan beregne riktig i forhold til innkjøp av mat.

Klikk her å registrere

Missed Us at Oslo Innovation Week?

Luckily, all our events at Oslo Innovation Week and Forskningsdagene are available for a rerun. Have a look!

We had great audiences during our three events on the 27th and 28th of September. If your were not among them, sitting in the brand new science centre of the Norwegian Cancer Society, do not despair. The events were all live streamed on Facebook. You still have a chance to experience them right here.

The events were co-hosted with our partners the Norwegian Cancer Society, the Norwegian Radium Hospital Research Foundation (Radforsk), IBM, Cancer Research UK, Norway Health Tech and EAT.

 

The first event of the week was titled “Antibiotic resistance and cancer – current status, and how to prevent a potential apocalyptic scenario”.

Antibiotic resistance and cancer – Current status, and how to prevent a potential apocalyptic scenario #OIW2017

Posted by Kreftforeningen on Tuesday, September 26, 2017

 

Our secondary event had the title “Cancer research and innovation – benefit for patients”.

Cancer research and innovation – benefit for patients #OIW2017

Posted by Kreftforeningen on Wednesday, September 27, 2017

 

The third and final event on our Oslo Innovation Week calendar was about how big data may transform the development of cancer treatments. 

How Big Data may transform the development of cancer treatments #OIW2017

Posted by Kreftforeningen on Wednesday, September 27, 2017

Young Skills at Thermo Fischer

The innovation company of the year wants to encourage young talents. 

 

Six students from Ullern Upper Secondary School spent their school day at Thermo Fisher Scientific just days after the company won the prestigious award as the innovation company of the year in Norway.

As part of the school collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster, Thermo Fisher Scientific opens their labs for science students at work deployment.

 

Curious about the school collaboration? Check out our new webpage!

The Dynabeads
The students got a unique insight into how one of Norway’s largest biotechnology companies advances their products, based on the so-called Ugelstad-beads or Dynabeads, developed by Professor John Ugelstad in the late 1970s.

Today, Dynabeads are further industrialized for use in specialized diagnostic tests and cancer treatments worldwide. Annually, the beads are used in an estimated number of four billion diagnostic analyses.

Scientist Synne Larsen and three students are in the company laboratory in Lillestrøm, a ten minute train ride from the capital, where Thermo Fisher Scientific quality checks its products in Norway.

Impressed students 
– I find it incredibly useful to see how our learning at school is being used in the workplace, says student Emma E. J. Botten.

Together with two co-students she was able to see the research and production done in the company’s facilities in Lillestrøm. In parallel, three of the girls’ fellow students were in Oslo and tried out life as crime scene investigators, using Dynabeads as a tool for finding DNA, in the company’s facilities in Montebello.

– It’s impressive to see how much work lies behind their products and how dedicated those who work here are, says student Nora B. Grone.

Diverse employment strategy
The students are in their third year at Ullern Upper Secondary School, with science as their speciality. They all want a career in medicine, global health, mathematics, physics or engineering. A tour of the lab and a visit to the factory were therefore among the highlights of the day.

– It was a bit overwhelming to see Ugelstad’s equation, which is the recipe for the beads, says student Thilde E. Kjorstad.

– Yes, but keep in mind that everyone cannot be as brilliant as Ugelstad. Everybody we employ is equally important and we must have people with different backgrounds and experience, says Erlend Ragnhildstveit, Research Director of Thermo Fisher Scientific in Norway.

Useful cooperation
Thermo Fisher Scientific is a member of Oslo Cancer Cluster. Part of the staff is situated in Oslo Cancer Cluster Innovation Park, where Ullern Upper Secondary School is located as well.

– The collaboration with Ullern is useful and important to us as a company. This makes it easier to host deployments. In order to develop our business further, as well as the health industry in Norway, we need people with a science background, says Erlend Ragnhildstveit.

Meet our new members – Part One

We are proud to introduce Oslo Cancer Cluster’s new members. This is the first part of two stories about our new members.

You can find the second part HERE.

On the 24th of August, Oslo Cancer Cluster hosted a summer party with the intention of getting to know their newest members in an informative and fun setting. The party started with a heartfelt welcome and speech held by Oslo Cancer Cluster’s General Manager Ketil Widerberg and intensive mingling amongst guests. After the welcome was in order, each member stood up, in turn, to introduce their amazing work.

Of the 14 new members we have so far this year, here’s an introduction to those who primarily work in the area of biotechnology.

Precision Oncology
Precision Oncology is a specialty contract research organization (CRO) that provides clinical research services. The company primarily provides application of metrics-driven project management to perfect oncology drug development.

As for their inspiration and reasoning for joining the Oslo Cancer Cluster roster of members, Andrea Cotton-Berry, head of Strategic operations at Precision Oncology, responds:

– What really inspires us at Precision Oncology, is matching the right drug to the right patient, by using biomarkers for patient identification and stratification; a true personalized medicine approach, to find more efficient treatments for patients with advanced cancers. We are looking forward to bringing our team of oncology development experts to contribute to the Oslo Cancer Cluster mission and initiatives, especially advancing immuno-oncology research.

Personalis
Personalis is a leading preciscion medicine company focused on advancing next generation sequencing based services for immuno-oncology. The company is mainly focused on producing the most accurate genetic sequence from each sample set, and using analytics and privately owned content to draw reliable and accurate biomedical interpretations of the data.

In regards to current and future inspiration, Erin Newburn, Senior Manager and Field Applications Scientist at Personalis, comments:

– We aspire to utilize next-generation sequencing as a multi-dimensional platform for bio-marker discovery across cancer therapeutics, as well as throughout developmental stages.

iNANOD
iNANOD is a nanotechnology based anti-cancer drug developing company established in 2016. Their goal is to increase efficacy of anti-cancer drugs and to reduce side-effects for cancer patients as well as maximizing the patients longevity. They aim to become a pharmaceutical company for anti-cancer nanomedicines in the near future.

As for expectations and reasoning for joining Oslo Cancer Cluster, Nalinava Sengupta, CEO and Co-Founder of iNANOD shares his view:

– We think our project – to develop cancer nano-medicine – fits best with Oslo Cancer Cluster. In the incubator we get in touch with other similar firms who have achieved milestones in cancer drug delivery. We expect synergistic knowledge transfer within the incubator network, as well as various kinds of help from the cancer research related entrepreneurial ecosystem developed at Oslo Cancer Cluster. This also helps with business developmental aspects and project application writing.

Norgenotech
Norgenotech is a start-up company that originated from the EU project COMICS that aimed at improving production methods for analysis of DNA damage and repair. Norgenotech mainly assesses genotoxicity, or property of chemical agents that damage the genetic information within a cell, as well as drugs. The company also participates in research projects and developing tools for measuring DNA integrity in patients.

Eisai
Eisai AB originates from a global company in Japan that is active in the manufacturing and marketing of pharmaceutical drugs, pharmaceutical production systems, and over-the-counter drugs. Eisai AB, that will be joining the Oslo Cancer Cluster roster of members, is the sales subsidiary of Eisai Company.

Immunitrack
Immunitrack is a startup company with capabilities in production and studies of protein molecules central to the adaptive immune system in humans in order to develop new therapeutics. Their mission is to provide the research community with tools to redesign or select drug candidates at the early stage of research and development, but also to provide reagents to monitor leading drug candidates effect on patient’s immune system.

Nacamed
Nacamed‘s goal is to produce nanoparticles of silicon material for targeted drug delivery of chemotherapy, radiation therapy and diagnostics to kill cancer cells. By using silicon nanoparticles in cases such as therapy, the particles are biodegradable which entails a clean delivery without any side-effects as they completely disappear and dissolve from the body.

Arctic Pharma
Arctic Pharma is a privately held startup biotech company founded in 2012 that primarily focuses on developing innovative anti-cancer drugs. They do this by exploiting cancer cells and their peculiar features, or more specifically, by targeting key enzymes that are upregulated, or have been increased in terms of stimulus with inhibitors designed at Arctic Pharma. Essentially, their main mission is to become a leader in designing cancer therapies that are both environmentally friendly and have few side effects.

Persontilpasset medisin i Arendal

Sentrale fagmiljøer og helsepolitikere møttes på Oslo Cancer Clusters første åpne møte under Arendalsuka. De diskuterte hva persontilpasset medisin har potensial til å være – og hva som skal til for å oppnå resultater av forskning og klinisk bruk.

Hva er egentlig persontilpasset medisin? Det handler enkelt forklart om at forebygging og behandling av sykdom skal bli bedre tilpasset den enkeltes biologi. Veien dit går gjennom forskning på genetisk variasjon. Slik forskning gir innsikt i hvorfor noen blir syke og andre ikke.

Tirsdag 15. august samlet folk seg i skipet MS Sandnes ved kaia Pollen i Arendal for å høre om persontilpasset medisin i medisinsk forskning og klinisk bruk.

Debatten ble arrangert av Bioteknologirådet, K.G. Jebsen-senter for genetisk epidemiologi – NTNU, Folkehelseinstituttet, Helsedirektoratet, Kreftregisteret og Oslo Cancer Cluster.

Alle vil ha det – hvordan gjøre det?
Fagmiljøer, politikere, pasienter og næringsliv ser ut til å ønske en utvikling mot mer persontilpasset medisin velkommen. Hvordan kommer vi fram til et helsevesen der dette er vanlig praksis?

Ole Johan Borge, direktør i Bioteknologirådet, var ordstyrer. Han åpnet møtet med å minne om målet for persontilpasset medisin: å tilby pasienter mer presis og målrettet diagnostikk og behandling, og samtidig unngå behandlinger som ikke har effekt.

Næringslivets mange muligheter
Kreft er det medisinske området som er tidligst ute med å ta i bruk persontilpasset medisin i Norge. Ketil Widerberg er daglig leder i Oslo Cancer Cluster. Han deltok i panelet under debatten, og fikk spørsmålet:

– Du representerer en næringslivsklynge. Hvilke roller kan store og små næringsaktører spille innen norsk helsevesen for persontilpasset medisin?

– Store farmaaktører og små biotekselskaper er viktige i utvikling av ny medisin. Store internasjonale selskaper kan komme hit til Norge for å teste ut og utvikle nye medisiner her. Store næringslivsaktører innen teknologi, som ikke tradisjonelt er involvert i helse, er det i dag ikke klart hvordan skal samhandle med helsesystemet. Apple har i flere tiår sagt at de vil inn i helse, men de har ikke klart det i USA. I Norge har vi imidlertid tilliten og muligheten til å skape slik samhandling. Dette er noe andre land ikke nødvendigvis har, sa Ketil Widerberg.

Personvern og persontilpasset
En stor del av debatten handlet om hensynet til personvern mot behovet for mer forskning på persontilpasset medisin. Er det slik at vi må velge mellom personvern og god forskning på persontilpasset medisin?

Hør hvordan paneldeltakerne tok tak i dette spørsmålet i denne videoen på Bioteknologirådets nettsider.

I videoen kan du til sist høre hva politikere fra Arbeiderpartiet og Høyre mener om persontilpasset medisin i Norge – og hva de vil gjøre først dersom de får statsrådposten innen helse etter Stortingsvalget i 2017.

Oslo Cancer Cluster har flere åpne arrangementer under Arendalsuka. Finn ut når og hvor her! 

Having Chemistry with Chemistry

Interested pupils at Ullern Upper Secondary School arrive at laboratory 117 to learn alongside Dr. Bora Sieng, a chemist in Arctic Pharma. Dr. Sieng advocates for the importance of chemistry and encourages pupils to pursue a career in the exciting field of chemistry.

 

At nine o’clock in the morning, three boys eagerly gather outside laboratory room 117. They’re waiting for an exciting opportunity offered by the collaboration between Ullern Upper Secondary and Oslo Cancer Cluster. This opportunity provides pupils the chance to see how chemistry is used in a real-life setting (a biotech company). This allows pupils to apply what they have learned in the classroom and in their textbooks to real-life scientific problems, such as developing new therapies for diseases.

The door opens and Dr. Bora Sieng greets the students with a friendly smile and handshakes. Dr. Sieng, who has a PhD in organic chemistry and is project leader in Arctic Pharma, welcomes them in. Arctic Pharma is a small start-up company developing innovative anti-cancer drugs.

Reaction Action
When entering the lab, we can feel the excitement between the pupils, they are here to learn. Dr. Sieng asks the boys what level of chemistry the pupils have taken. They nervously, but excitedly respond that they haven’t taken advanced levels, but know basic organic chemistry. Thus, they’re put to work after going through some textbook examples and introductory concepts. It’s time for some chemistry cooking!

A Collaboration is Formed
Arctic Pharma relocated their chemistry laboratory temporarily to Ullern in April. Dr. Sieng has been using the laboratory since then. He offers some insight into the new collaboration between Arctic Pharma and Ullern Upper Secondary School.

– For the past few months, I have had the opportunity to carry out my work using the facilities at Ullern through Arctic Pharma’s Collaboration with the school. I feel the school collaboration is a win-win for Arctic Pharma and the pupils at Ullern. Arctic Pharma is committed to introduce pupils to organic chemistry from a company’s perspective. This provides the students with the chance to get a feel of what it is like to work in a biotech company and to see how their education can be applied.

Chemistry is Exciting
When asked why exactly the pupils should learn chemistry, Dr. Sieng responds with this:

– Organic chemistry is fascinating! It can have many applications such as drug design and development, cosmetics, material development in, for example, rubber, plastics, detergents and paints as well as production of chemicals used in agriculture, to name a few examples.

Next Generation
At Arctic Pharma, Dr. Sieng works in a team of scientists that specialize in different fields important for drug design and development. As a medicinal organic chemist, Dr. Sieng is passionate about his work, and hopes to inspire the new generation of chemists.

–  To keep Norway a world innovator, the field of chemistry is important and we especially need to nourish the next generation of chemists and scientists, hence this collaboration is also important for our country.

Essentially, we need to ensure a future for Norway that will continue to thrive, construct and further the research that will help us continue down the path of innovative discovery. Such a future can only be secured if we continue to unlock the potential that chemistry offers us; a future waiting to be unlocked by the next generation.

Funding Innovation in BioPharma and IT

What kind of work does it take to receive PERMIDES funding for innovative concepts and projects? Meet one of the companies that just received funding. 

 

22 collaboration projects will receive a total of 1,25 Million Euros from PERMIDES for innovation projects between small and medium sized enterprises (SMEs) from biopharma, bioinformatics and the IT sector. 

One of the lucky companies to receive innovation funding is Oslo Cancer Cluster member Myhere. For MyHere, it was especially important that the PERMIDES initiative is focused on the intersection between BioPharma and IT.

– Working with partners that are specialized in our field makes it easier to communicate the mission we are on, the concrete problems we are trying to solve and to qualify if we are a good match for each other or not. Furthermore, as we learned about the people and companies involved with PERMIDES, we discovered that we could learn a lot from the experiences of other SMEs in the program, says Jon-Bendik Thue, CEO at MyHere.

An innovative health app
MyHere’s mission is mainly carried out through the use of their app. This app, which pinpoints levels of Prostate Specific Antigen (PSA) in the bloodstream, enables a clearer outlook on potential prostate cancer and when to promptly, and timely, seek help. Thus, this app creates a balanced overview of prostate cancer that can save the patient and doctor from underdoing and overdoing the process. Essentially, the app is designed to save lives.

 

Essential health data
The funding will enable MyHere to start with a project that manages content from owners of health data. Health data is a tremendous resource, but unfortunately also tremendously underutilized. One important factor is the issue with getting consent from the owner of health data for research purposes. Typically, the owner is the individual the information was generated from, often in the role as a patient.

– As a provider of medical services directly to consumers, while at the same time organizing data across patient journeys, we are in a unique position to help solve the issue with consent for use of data. The funding from PERMIDES will allow us to build a dynamic data owner content management system, that will be integrated into our medical service platform. We are very excited about this project and we look forward to implementing it with our partner FramX, says Thue.

– Without this funding, we would have had to postpone the initiative without knowing when we would be able to realize it. Now we are thrilled that we will be able to hit the ground running right after the short Norwegian summer, he adds.

More winners in this round
Another Oslo Cancer Cluster member that got funding in this PERMIDES call is Arctic Pharma, a small start-up company committed to developing innovative anti-cancer drugs by exploiting the peculiar metabolic features of cancer cells.

These two Oslo Cancer Cluster members were among six Norwegian companies involved in four successful applications for Innovation Voucher funding. All of them will be able to initiate their joint projects in August and expect to see results early next year.

 

How Our Genes Will Change Cancer

Doctors, researchers and audience gather at breakfast to learn about genetics, data and how working together will help beat cancer.

The time is 8:15. Many have started to file in and shuffle to their seats while chatting and occasionally sipping their first morning coffee. As it starts to quiet down, the lights are dimmed, the audience wake up and the breakfast meeting begins.

An air of seriousness with a hint of respect changes the atmosphere, and the audience watches as the first guest speaker steps in and introduces the concept of genes and their relation to cancer.

– Cancer is brought on by errors in our genes. Most of the time, cancer is a result of the unlucky, says Borge, who is the director at the Norwegian Biotechnology Advisory Board.

This is the start of his talk on genes and cancer, where the audience is introduced to that which defines us most: DNA, the molecule of life.

To the moon and back
– 20,310 recipes in our genetic material. 2 meters of DNA in every cell. 10 Billion cells, of which 20 billion meters of DNA is found. If you do the math, astonishingly it amounts to 26,015 trips back and forth to the moon, Borg says, as he shows us a visual representation on the powerpoint slide. (See video in Norwegian.)

It’s this incredibly long strand of genetic material where things can go horribly wrong. If there’s a genetic error, or mutation in the DNA that happens to take place between the double helix and if there’s enough errors, cancer happens. This is the unfortunate fate for many of us.

– However, we may not have come a long way in finding the ultimate cure for cancer, but what we have accomplished is the ability and possibility of analysing, and ultimately predicting, cancer through genome sequencing, Borge says.

It was the best of times…
This message, as a central theme to the breakfast meeting taking place, shines a hopeful light in an otherwise frightful and serious subject. With genome sequencing, or list of our genes, scientists and doctors will have greater accuracy to predict genes that are potential carriers, and highly susceptible to, different cancers.

However, this requires a large amount of genome sequences: we need an army of genome data.

From terminal to chronic
To set further example, the next speaker to take the stage is oncologist Odd Terje Brustugun. He stresses the importance of personalized treatment for lung cancer patients, even those with metastatic cancers. These patients can be tested today to see if they are viable to receive new kinds of treatmemt, such as targeted therapy. This was the case for lung-cancer patient, and survivor for five years, Kari Grønås.

Kari Grønås was able to participate in a clinical study. She was treated with targeted therapy instead of the ordinary treatment for lung cancer patients at that time: chemotherapy.

– I feel I have gone from feeling like I have a terminal disease to a chronic one, she says from the podium.

Beating cancer: the story of us
This personalized approach is arguably what worked for Kari, setting the example and potential for the future. If we can analyse our own genes for potential cancer, then we are both able to prevent and provide personalized medicine catered to the individual. This is why genome sequencing is important for the future.

However, this cannot be done alone. To get a representable treatment for the individual, we need data. And data does not come reliably from one individual, but from the many.

– It is not your genes that are the key for tomorrows cancer research, it is ours. It is collaboration where large amounts of data and correlation will give us the knowledge that ensures the right path towards the future. A future with better cancer treatment for all, says Ole Johan Borge.

A Constant State of Liveliness

A driving force behind the collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster is stepping down. This is her adventure.

After fifteen great and productive years at Ullern Upper Secondary School, Esther Eriksen steps down from her position as vice principle in the upcoming month. Esther, who has been responsible for many various tasks in her position, has been a part of Ullern’s transformative experience alongside Oslo Cancer Cluster’s emergence in 2009 and recounts her time at Ullern.

A flourish of innovation
Esther Eriksen describes the transformation and unification of Ullern Upper Secondary School and Oslo Cancer Cluster as being a progression from a strong belief in it’s potential to a flourish of innovation.

The collaboration has become a constant state of liveliness: from pupils attending classes, to research, to teamwork and a continuous process of growth.

Since 2009, the school and the cluster, with all its member companies and institutions, has unified to produce a collaborative arena for the pupils. This is an experience Eriksen describes nothing short of “wonderful, educational and groundbreaking”.

Diversity in teamwork
– The collaborative experience is incredible due to the pupils’ ability to take in experience in regards to teamwork. Not to mention they learn how knowledge from books can be translated to hands on work and ultimately get a feel for what life has in store for them, says Eriksen.

Esther Eriksen describes her own experience as being much of the same, and stresses the notion of working as a team.

– Diversity in teamwork is really important! We see this from well-received results and happy pupils, says Eriksen.

Future potential
In regards to the future of this collaboration, Vice Principle Eriksen expresses her desire to see the school continue down the path it has set out on. She wants to see the pupils continue to learn, gain opportunities and continue to work collaboratively.

– I wish the pupils would gain further awareness of the potential this unification brings, and hope to see increased interest in teamwork as an integrity.

The best of moments
Esther Eriksen also shares what she would consider the best moments of her time at Ullern, of which these were her favorite:

  1. When the new school first opened in the Oslo Cancer Cluster Innovation Park in 2015 – hard work finally turned to fruition
  2. Seeing how happy and motivated the pupils are when they do projects with scientists, businesses and hospitals in the cluster
  3. The emergence of vocational studies, such as electronics and health care studies, at Ullern Upper Secondary School

To conclude, Vice Principle Eriksen would like to leave the school and her colleagues this message: that she will continue to observe and follow the thriving development taking place at Ullern Upper Secondary School.

– This is only the beginning!

 

Helping biotech companies through innovative IT solutions

The cluster-to-cluster project PERMIDES stimulates collaboration between biotech companies and IT companies. Its goal is to develop more innovative, personalized cancer treatments.

 

Oslo Cancer Cluster is currently involved in a big European collaboration through the cluster-to-cluster project PERMIDES.

24 May you can benefit from the project by joining the BIOMED INFORMATICS workshop in Oslo. This workshop brings together small and medium sized companies from the biopharma/medtech and IT sectors. (See the sidebar for more info on this event.)

PERMIDES aims to utilize novel IT-solutions to accelerate drug development in biotech companies. Biotechs and the healthcare sector generally lag in using IT in their everyday work.


Can get better at IT

“I know of companies who still manage their clinical trial studies using Excel. This is not a good idea. An Excel sheet may only hold a limited amount of data before it crashes and you lose everything”, says Gupta Udatha.

Udatha is the PERMIDES project leader in Norway. He divides his time between Oslo and Halden, where the NCE Smart Energy Markets-cluster is situated. This cluster is mainly involved in IT. Other clusters participating in the project are from Austria and Germany.


Ambitious goals for next year

Before PERMIDES ends in 2018, it aims to have reached some ambitious goals:

  • 90 innovation projects between IT and biotechs will have received funding through a voucher system
  • 120 IT companies and biotech companies will have benefited from technology transfer activities
  • 75 enterprises will have participated in networking conferences at both regional and European levels
  • 100 companies will have placed their profile in a semantic matchmaking portal: the PERMIDES platform


Find your ideal match

The PERMIDES platform is designed to match IT-companies and biotech companies. As a supplementary service, Gupta Udatha and others involved in PERMIDES are currently busy arranging matchmaking events all over Europe. They try to find the perfect match between IT- and biotech companies interested in collaborating on projects on personalized medical treatment.

Through PERMIDES voucher funding, a biotech company can avail services for up to 60 000 Euros from an IT-company. This gives them a market advantage in digitalizing their processes.

“The health care and biopharma sectors must understand that new IT solutions are the way forward. Tasks which a company may spend weeks and months doing, may easily be done by a few smart IT-solutions, in just few clicks, says Udatha.


Pursuing new EU-programs

PERMIDES is the first EU-project Oslo Cancer Cluster is involved in, but it will not be the last. Oslo Cancer Cluster is actively seeking new EU-projects to apply for.

This year, Oslo Cancer Cluster and Oslo Medtech, another health cluster in Norway, are looking into new EU-projects to apply for together. They have received support from the Norwegian Research Council, that wants more Norwegian institutions and companies to get involved in EU-projects.

“Hopefully, we will have landed ten new EU-project applications by 2019”, says Udatha.

 

What PERMIDES is

  • Stands for Personalized Medicine Innovation through Digital Enterprise Solutions
  • The project is for European small and medium sized enterprises in biotech and IT
  • The aim is to strengthen the competitiveness and foster the innovation potential of personalized medicine as an emerging industry in Europe
  • PERMIDES offers workshops, funding schemes and a matchmaking portal for the participating companies
  • Read more on permides.eu


Clusters involved in PERMIDES
Oslo Cancer Cluster S.A (Norway)
NCE Smart Energy Markets, c/o Smart Innovation Østfold AS (Norway)
Software-Cluster c/o CyberForum e.V. (Germany)
Cluster für Individualisierte ImmunIntervention (Ci3) e.V. (Germany)
Intelligent views GmbH (Germany)
NETSYNO Software GmbH (Germany)
Oncotyrol – Center for Personalized Cancer Medicine GmbH (Austria)
IT-Cluster – Business Upper Austria, OÖ Wirtschaftsagentur GmbH (Austria)


Learning about physics in radiotherapy

Join six pupils from Ullern Upper Secondary School to see how physics plays a crucial role in good cancer treatment.

 

A group of interested pupils pay close attention as Taran Paulsen Hellebust explains the recommended radiation dose for a patient with prostate cancer. On a big monitor, she shows how the dose administered by the radiotherapy machine should vary between organs, and what will happen if you increase the dosage or the radiation, or expand the radiation field.

The six upper secondary school pupils ask many good questions. This week, they are spending their school days at the Norwegian Radium Hospital’s Department of Medical Physics, where they are on work placement.

While looking at the screen, they are talking about grey which is a unit of measurement, just like metres and decilitres, for radiation.

All six pupils are studying maths and physics plus either chemistry or biology at Ullern Upper Secondary School, which is only a stone’s throw away from the hospital. Many of them are considering studying medicine, engineering or biotechnology after they graduate this spring. The pupils are Kristian Novsett Borgen, Aurora Opheim Sauar, Edvard Dybevold Hesle, Alexander Lu, Trym Overrein Lunde and Tuva Askmann Nærby.

 

Cooperation on radiation
The pupils get practical insight into topics they have barely touched on during physics lessons. They appreciate getting some insight into working life and seeing how a physicist works.

Hellebust explains how a team comprising a doctor, a radiation therapist and a physicist cooperate on planning a patient’s radiation treatment. If, like many others, you think of physicists as elderly men with unkempt hair running around with their heads full of abstract and incomprehensible formulas, your prejudice has hereby been refuted. The physicists who supervise the pupils and work with radiotherapy on a daily basis are young and know how to entertain their pupils.

 

From brachytherapy to radiotherapy machines
After the pupils have been given an introduction to brachytherapy, physicists Jørund Graadal Svestad and Live Furnes Øyen take them on a tour to see the radiotherapy machines in use in the radiotherapy building. Cancer patients sit in the corridors with family members and friends waiting for their turn, while Jørund explains to the students how the radiotherapy machine is used.

Inside the radiotherapy room, the Geiger counter that Jørund is carrying detects radiation.

‘But it’s a very small amount of radiation, not problematic in any way,’ he says.

The final stop before lunch is a room that could easily be mistaken for the set of the old Norwegian science TV series Fysikk på roterommet. Among other things, it contains an old radiotherapy machine and an old-fashioned ultrasound machine. The pupils have a look and fiddle around with the old machines. They get a chance to feel and see how today’s radiotherapy has developed by leaps and bounds within a relatively short space of time.

‘It’s been great fun and very educational and, not least, we’ve had an opportunity to learn from the experts,’ says one of the pupils.

 

Photo of Oncolmmunity's offices.

OncoImmunity AS wins the EU SME Instrument grant

The bioinformatics company OncoImmunity AS was ranked fourth out of 250 applicants for this prestigious grant.

250 companies submitted proposals to the same topic call as OncoImmunity AS. Only six projects were funded.

We applied for the SME instrument grant as it represents an ideal vehicle for funding groundbreaking and innovative projects with a strong commercial focus. The call matched our ambition to position OncoImmunity as the leading supplier of neoantigen identification software in the personalised cancer vaccine market”, says Dr. Richard Stratford, Chief Executive Officer and Co-founder of OncoImmunity.


Personalised cancer vaccines
Neoantigen identification software facilitates effective patient selection for cancer immunotherapy, by identifying optimal immunogenic mutations (known as neoantigens). OncoImmunity develops proprietary machine-learning software for personalised cancer immunotherapy.

This solution also guides the design of neoantigen-based personalised cancer vaccines and cell therapies, and enables bespoke products to be developed faster.

The SME Instrument gives us the opportunity to further refine and optimise our machine-learning framework to facilitate personalised cancer vaccine design. This opportunity will help us establish the requisite quality assurance systems, certifications, and clinical validation with our partners, to get our software accredited as an in vitro diagnostic device”, says Dr. Richard Stratford.

In vitro diagnostics are tests that can detect diseases, conditions, or infections.

Dr. Richard Stratford is Chief Executive Officer and Co-founder of OncoImmunity, member of Oslo Cancer Cluster and part of the Oslo Cancer Cluster Incubator.


Hard to get
Horizon 2020’s SME Instrument is tailored for small and medium sized enterprises (SMEs). It targets innovative businesses with international ambitions — such as OncoImmunity.

“The SME instrument is an acid test; companies that pass the test are well suited to make their business global. It also represents a vital step on the way to building a world-class health industry in Norway”, says Mona Skaret, Head of Growth Companies and Clusters in Innovation Norway.

The SME Instrument has two application phases. Phase one awards the winning company 50 000 Euros based on an innovative project idea. Phase two is the actual implementation of the main project. In this phase, the applicant may receive between 1 and 2,5 million Euros.

The support from the SME instrument is proof that small, innovative Norwegian companies are able to succeed in the EU”, says Mona Skaret.

You can read more about the Horizon 2020 SME Instrument in Norwegian at the Enterprise Europe Network in Norway.

 

Thinking of applying?
Oslo Cancer Cluster helps its member companies with this kind of applications through the EU Advisor Program and close collaboration with Innovayt and Innovation Norway.

The SME Instrument is looking for high growth and highly innovative SMEs with global ambitions. They are developing innovative technologies that have the potential to disrupt the established value networks and existing markets.

Companies applying for the SME Instrument must meet the requirements set by the programme. Please see the SME Instrument website for more information.

Three people sitting in front of a Macbook.

Try our matchmaking platform

Why join the PERMIDES platform? It is where you can find your biopharma-IT match.

 

“Since the launch of PERMIDES in September 2016, we have collected a lot of input from small and medium sized enterprises (SMEs). Several of our members have contributed by sharing their needs and challenges of digitalisation”, says Gupta Udatha, Project Manager for PERMIDES.

PERMIDES kicked off the matchmaking platform on March 15, 2017. During the following two weeks, approximately one hundred SMEs across the globe registered in the platform to find potential partners  for joint biopharma-IT innovation projects in personalised medicine.

There is plenty of room for more companies to benefit from the platform.

Potential project team partners can find each other on the PERMIDES platform. It offers matchmaking of companies from the biopharmaceutical and IT sector, based both on their needs and expertise”, says Udatha.

To be eligible for funding, project teams need to consist of one biopharma SME as the main applicant and at least one IT SME as the service provider.


Funding opportunities

PERMIDES offers different types of vouchers to SMEs allowing them to tackle and solve challenges at specific levels of complexity. Advancing personalised medicine in the digital age requires solutions to issues currently driving the IT and software sector, e.g. Big Data, machine learning, IT security, data protection, and cross-enterprise collaboration.

Each SME can apply for multiple vouchers, but is restricted to the maximum value of each voucher type as detailed at our Open Call for Financial Support. The voucher funding scheme of PERMIDES is aimed at SMEs for developing novel personalised medicine products and solutions.

It is the ambition of PERMIDES to accelerate the digitalisation of biopharmaceutical SMEs in the field of personalised medicine. This is a way of increasing the competitiveness of the participating SMEs.

For more information, visit permides.eu


Do you have questions?
We will be happy to have a meeting with your company and guide you through the PERMIDES funding and collaboration opportunities. Simply contact us if you have questions.

Gupta Udatha
gupta.udatha@oslocancercluster.no
455 34 627

Jutta Heix
jh@oslocancercluster.no
941 63 089

Utplassering på patologen ga mersmak

Ullern videregående skole har et unikt tilbud til sine elever. Gjennom det skolefaglige samarbeidet med Oslo Cancer Cluster kan de delta på utplasseringer hos medlemmene. Spennende, var gjennomgangstonen da vi besøkte de åtte elevene fra Ullern som denne uken har vært hos avdeling for patologi ved Oslo universitetssykehus. Marie Wahlstrøm  kan godt tenke seg å bli patolog.

 

– Dette er et snitt av en frisk livmorhals, sier Else Skovholt og justerer på mikroskopet slik at cellene i prøven, rosa, hvit og sort i fargen, trer tydelig fra.

Skovholt er patolog og sitter nå omringet av åtte elever fra Ullern videregående skole. De ser alle ned i hvert sitt mikroskop som viser samme bilde som Skovholt har lagt på.

– Men se her. Dette er et snitt av en livmorhals med celleforandringer forårsaket av HPV-virus. Om dere ser her så ser dere normalt vev, og så skjer det en glidende overgang til flere celler som sitter tettere sammen med mange mørke kjerner. Dette kan utvikle seg til kreft og må skjæres bort for ikke å gjøre det, sier Skovholt.

Alle jentene som er på utplassering er vaksinert mot dette viruset, og følger nøye med på gjennomgangen av friskt og sykt vev og hvordan se forskjellene på de ulike cellene som er på snittet.

– Tidligere i dag fikk vi se en livmor. Pasienten som den var fjernet fra ligger fremdeles på Radiumhospitalet rett over veien her, sier Marie Wahlstrøm fra klasse 2STE.

 

Et håndarbeid som viser hvem som er frisk og hvem som er syk

Elevene følge fascinert med ettersom Skovhold skifter ut snitt fra ulike prøver. Neste ut er eggstokker og eggledere, sædlederne og bryst. Rutinert viser hun elevene forskjellene på friskt vev, de ulike celletypene som er byggesteinene i de ulike organene og kreftceller. Spørsmålene er mange og Skovholt svarer enkelt på legspråk slik at alle får med seg alt.

På spørsmål om patolog er et yrke elevene kan tenke seg, er Marie krystallklar.

– Definitivt ja. Dette er et håndarbeid der du jobber praktisk i stedet for å sitte på kontor, du er med på å avgjøre om noen er syk eller frisk, og du vet at pasientene er rett her borte, så det blir veldig nært og føles veldig viktig, sier Wahlstrøm.

Patolog Marius Lund-Iversen bidrar også med sin spesialkunnskap. Over to dager har de åtte elevene tuslet opp i sjette etasje i den blå blokka i Oslo Cancer Cluster Innovasjonspark for å få skreddersydd kunnskap om et yrke som sårt trenger rekruttering.

Elevene har fått lage snitt, tappe eget blod for å analysere det for hvite og røde blodlegemer. De har også sett på ulike organer og hvordan de blir oppbevart på formalin, for så å bli snittet opp slik at de kan studeres i mikroskop.

Utplasseringen hos patologen skjer hvert år. Det er ett av mange tilbud som elever ved Ullern får takket være det skolefaglige samarbeidet mellom Oslo Cancer Cluster og Ullern videregående skole.

 

Kick-Off: Call for Proposals for PERMIDES

The first call for proposals for the PERMIDES project is opening on March 15th. We urge all small and medium sized biopharma-companies working to take the step into the digital era, to apply for funding up to 60 000 Euros.

 

D.B.R.K Gupta Udatha, project manager for PERMIDES, is very happy to kick off the first call for proposals. He wants to help you succeed in this call for proposal by defining the essentials:

‘In your proposals, you should address the innovation barriers and challenges that you experience in the area of personalised medicine. It should be challenges that somehow can be solved by digitalisation’, says Udatha.

 

Developing novel personalised medicine
The voucher funding scheme of PERMIDES is aimed at small and medium sized enterprises (SMEs) from the biopharmaceutical sector developing novel personalised medicine products and solutions (e.g. biotech/medtech companies, diagnostics companies, CROs, biobank companies, bioinformatic companies).

‘To be eligible for funding, project teams must consist of one biopharma SME as the main applicant or beneficiary. In addition, there must be at least one IT SME as a service provider. Potential team partners in the project can be found via the PERMIDES platform, which offers a matchmaking of companies from the biopharmaceutical and IT sectors’, says Udatha.

 

Get more information:

 

Contact:

Jutta Heix, International Advisor
D.B.R.K Gupta Udatha, Project Manager PERMIDES

 

Kronikk i Aftenposten: De nordiske landene kan gjøre noe resten av verden drømmer om

De nordiske landene bør samarbeide mer for å utvikle bedre kreftbehandlinger. Sammen kan Norden bli et globalt forsknings- og testsenter for nye kreftbehandlinger og -medisiner. Det kan gi store gevinster for kreftpasienter i hele verden. Denne kronikken sto på trykk i Aftenposten torsdag 9. mars.

Ketil Widerberg, daglig leder i Oslo Cancer Cluster, skrev kronikken samme uke som The Economist, Forskningsrådet og Oslo Cancer Cluster arrangerte den nordiske konferansen War on Cancer Nordics i Oslo. De nordiske landene ønsker å lede an i kampen mot kreft. Nå er det på tide at infrastrukturer og lovverk legges til rette for det.


Norden kan vise vei i kampen mot kreft. For vi har noe de andre – selv ikke USA – har


Design, TV-serier og nå: kreft
Nordisk design er verdenskjent, og nordisk film har gjennom TV-serier som Broen etablert en ny sjanger i underholdningsindustrien. På 1990-tallet endret Nokia og Ericsson hvordan vi brukte mobiltelefonen. Slike fremskritt setter Norden på det internasjonale kartet og skaper arbeidsplasser. Nå er tiden inne for liknende fremskritt i kampen mot kreft. Vi har gode forutsetninger, men er vi vårt ansvar bevisst?

Vi har fremragende kreftforskning, for eksempel innen immunterapi for kreft, fotodynamisk teknologi og radioaktive legemidler (radiofarmaka). På disse områdene gjør både nordiske forskere og bioteknologifirmaer det godt internasjonalt. Hver for seg er de nordiske landene små, men samlet har de over 26 millioner innbyggere, og er et interessant marked for forskning, bioteknologi- og legemiddelselskaper.


Norden har unike fortrinn
Norden har flere forutsetninger for å lykkes. Først og fremst har alle nordiske borgere et unikt personnummer. Dette mangler faktisk i mange andre land, som USA. Personnummer har gjort det mulig for nordiske myndigheter å samle unike helsedata. I over 60 år har de nordiske landene samlet helse- og kreftdata i biobanker og registre og bygd verdensledende helsesystemer. Den nordiske befolkningen har dessuten et stort digitalt liv, og samfunnet har generell tillit til forskning.

De nordiske landene kan bruke disse felles fortrinnene til å gjøre noe resten av verden drømmer om: bruke offentlige helsedata for å se hvilken lovende medisin som virker på hver enkelt pasient. Slik kan legemiddelet godkjennes og tas i bruk før de tradisjonelle tidkrevende og kostbare delene av klinisk utprøving blir satt i gang. Tiden det tar fra et kreftlegemiddel blir patentert til det blir godkjent til bruk vil bli kortere, og pasienten vil kunne få behandlingen flere år tidligere. Samfunnet vil kunne spare millioner. Norden bør være seg sitt ansvar bevisst og gå i bresjen for raskere utvikling av ny kreftbehandling. Vi har ikke råd til å vente.


Ny viten gir bedre behandling
Kreft er en av vår tids store samfunnsutfordringer. Hvert år dør 8 millioner mennesker av kreft i verden og 14 millioner av oss får en kreftdiagnose. Det er mange, og antallet vil øke. Ifølge Verdens helseorganisasjon vil det øke med hele 70 prosent de neste 20 årene.

Heldigvis øker også forståelsen av hvor komplekse sykdommene som vi kaller kreft er. Vi vet at det finnes over 200 kreftsykdommer, og vi vet at kreft påvirkes blant annet av genetiske faktorer. I tillegg har vi nå forstått at immunsystemet spiller en viktige rolle i utviklingen av ulike kreftsykdommer og at vi kan påvirke immunsystemet til å spille på lag med kroppen mot kreften. Økt kunnskap om hva kreft egentlig er gir oss bedre forutsetninger for å vinne kampen mot kreft. Men med ny viten følger også en ny dynamikk for hvordan behandling skal utvikles, kategoriseres og tilbys pasienter.


Tid for politisk vilje
Digitalisering av kreftforskning gir rask fremgang i mange land. Store globale teknologifirmaer som Microsoft, IBM og Google satser nå på helse, og spesifikt kreft. Med kunstig intelligens kan kreftforskere simulere, teste hypoteser og samle og korrelere data som ikke var mulig for kun få år siden. Norden har unike helsedatabaser, og vi kan bygge opp kompetanse sammen med globale selskaper på samme måte som Norge bygde opp oljeindustrien på 1970-tallet. Da inviterte Norge inn store internasjonale selskaper som utviklet oljeindustrien under statlig styring. Dette krevde samarbeid og tilrettelegging fra det offentlige.

En satsing på et nordisk kreftsamarbeid krever også offentlig tilrettelegging. Myndighetene og offentlige instanser må åpne for at forskere kan få bruke helsedataene vi allerede har. I Norden har vi strukturen som gjør det mulig å nå raskere fram med ny forskning. Vi kan hjelpe pasienter ved å godkjenne og ta i bruk legemidler før de tradisjonelle tidkrevende og dyre siste kliniske studiene settes i gang. Både USA og EU har forsøkt, men med begrenset hell, blant annet fordi de mangler personnummer og har fragmenterte helsesystemer. Der har de politisk vilje, men mangler strukturene.


Et globalt testsenter
Nordiske helsevesen samler inn stadig mer data fra befolkningen. Nå kan slike helsedata brukes til å utvikle medisiner raskere. Det vil stille nye krav til rapportering, sikkerhet og formål med bruk av helsedata. Det vil kreve en åpen og innovativ holdning både fra offentlige og private aktører. Dette er ikke risikofritt, men gevinsten for samfunnet og for den enkelte pasient som overlever takket være raskere og bedre behandling, vil være betydelig.

Norden har en unik mulighet til å være et globalt testsenter for utvikling av nye legemidler som utnytter den offentlige digitale infrastrukturen. Google endret hvordan vi bruker internettet. Vi gikk fra AltaVista til Google, og så oss aldri tilbake. Norden har alle forutsetninger for å lede an i digitaliseringen innen helse. Det kan være med på å endre livet til de 14 millionene nye menneskene som får kreft hvert år.

Ketil Widerberg, daglig leder i Oslo Cancer Cluster

The Economist & Oslo Cancer Cluster: War on Cancer Nordics

Oslo Cancer Cluster is proud to be partner of The Economist Events War On Cancer Nordics.

The War on Cancer Nordics 2017 in Oslo will gather leaders in oncology from the Nordic region and beyond, to discuss the region’s primary challenges in cancer care and control. The event will bring together policy makers, NGOs, academia, research and health care professionals, patient groups and cancer control institutes with private sector business leaders.

 

Questions we will answer

  • How much does cancer cost the Nordic countries per year both in terms of treatment costs and its impact on the labour market?
  • Would a unified Nordic oncology framework be desirable? 
  • What can be learnt from countries that have made more progress in prevention initiatives? 
  • How could research in immuno-oncology be scaled across the region to improve outcomes for patients? 
  • What role will new technologies play in shaking up cancer care, from prevention, through diagnosis, to treatment and to optimise symptoms and quality of life?

 

Founding sponsor: The Research Council og Norway and silver sponsor: Roche

PCI Biotech granted NOK 13.8 million from the Research Council

Our member PCI Biotech has been granted NOK 13.8 million to the project “Photochemical vaccination – novel immunotherapy concept for treatment of cancer and infectious diseases”.

The main goal of the project is to document in a proof-of-principle clinical study in cancer patients that PCI Biotech’s photochemical internalization (PCI) technology can be used to improve the efficacy of a therapeutic cancer vaccine. Other important aspects of the project is to develop the PCI technology for use in vaccination against certain types of viral and bacterial infections, and to explore the technology for use with mRNA-based vaccination.

‘This grant supports further development of the promising fimaVacc technology, as well as the important vaccination application of the fimaNAc technology. Both of these applications are well suited for the development of new types of immunotherapy against cancer, and also for the prevention and treatment of some types of infectious diseases, including certain types of chronic virus infections. We are very pleased to see that the expert evaluators and the Research Council share our view on the potential of these technologies.’ says CEO in PCI Biotech, Per Walday.

The project will be initiated in Q3 2017 and run for three and a half years. The grant will cover up to 35% of the project costs and the project will be implemented in the company’s current plans. The grant is subject to final contract negotiations.

Established in 2006, the BIA programme is the largest industry-oriented programme at the Research council of Norway (Forskningsrådet). This broad-based programme supports high-quality R&D projects with good business and socio-economic potential.

About PCI Biotech
PCI Biotech is a biopharmaceutical company focusing on development and commercialisation of novel therapies for the treatment of cancer through its innovative photochemical internalisation (PCI) technology platform. PCI is applied to three distinct anticancer paradigms: fimaChem (enhancement of chemotherapeutics for localised treatment of cancer), fimaVacc (T-cell induction technology for therapeutic vaccination), and fimaNAc (nucleic acid therapeutics delivery).

www.pcibiotech.no

Update: PERMIDES 1st European Workshop

Oslo Cancer Cluster organized and hosted the ‘1st European Workshop : PERMIDES H2020 Project‘ on 06th December 2016 @ Jónas Einarsson Auditorium, in collaboration with NCE Smart & on behalf of the PERMIDES consortium.

More than 30 delegates from Biopharma, IT and Bioinformatics companies mostly from the Nordic countries actively discussed their innovation barriers and needs along the personalised medicine value chain and digital health revolution. MediSapiens (Finland) and eSmart Systems (Norway) gave stimulating presentations on Digitization of bio-business, Big Data Analytics & Machine Learning aspects. Oslo Cancer Cluster kickstarted the group discussions with an introduction to PERMIDES consortium, the Value Chain Challenges & Topics for Innovation Projects.

During the later half of the workshop, moderated group discussions prioritised the key challenges of biopharma SMEs which can be addressed with the implementation of IT solutions and automatised processes. The workshop thereby provided valuable input for the PERMIDES Innovation Project calls to be launched during the first quarter of the year 2017. In addition, it provided initial matchmaking between participants from the biopharma and IT sector.

Currently we are developing the PERMIDES online platform, where biopharma – IT & bioinformatics SMEs can identify suitable partners to jointly apply for Innovation Vouchers allowing them to address their value chain challenges. For more information, please visit: PERMIDES

 

Given below is the glimpse of the workshop agenda:

agenda

 

For further information and discussions, please contact:

gu-jh

Utplassering med uttelling

Gjennom det skolefaglige samarbeidet mellom Oslo Cancer Cluster og Ullern videregående skole har realfagselever hatt en ukes utplassering på avdeling for Tumorbiologi ved Institutt for Kreftforskning ved Oslo universitetssykehus i 7 år.

 

I år er de heldige elevene som får være med kreftforskerne i sitt dagligvirke; Marie, William, Ondrej, Julie, Louise og Anine.

Da vi stikker innom på andre dag av utplasseringen er elevene i gang med å skille brystkreftceller og føflekkreftceller ved hjelp av magnetiske Ugelstadkuler. Kulene er dekket med ulike antistoffer som gjenkjenner enten bryst-spesifikke proteiner eller føflekk-spesifikke proteiner.

-Vi har søkt utplassering selv for vi har veldig lyst til å kunne ta i bruk det vi har lest om på skolen mer i prakis, sier Louise. Hun var og på utplassering i fjor på Folkehelseinstituttet.

-Det er veldig spennende å lære mer om hva man gjør på en lab og hva det arbeidet går ut på, sier Marie.

De er skjønt enige om at et arbeidsliv som forsker eller lege kunnevære veldig spennende, og alle seks har biologi og kjemi på skolen.

Etter å ha jobbet en del to og to med prøver i laben for å få fram en væske som skal bestå av Ugelstadkuler som har festet seg til kreftceller, går gjengen videre inn på mikroskopirommet for å kikke på prøvene de har jobbet med, samt en negativ prøve for å sjekke at de har gjort eksperimentet riktig.

-Det er mye håndarbeid på en lab. Det er nok veldig uvant for elevene, sier Siri Tveito som er kreftforsker og har ansvaret for elevene denne uken sammen med Karen-Marie Heintz.

-Men de er dyktige og blir flinkere til å pipettere hver dag som går, sier Tveito som har vært med på utplasseringene siden 2012.

Det som skiller utplasseringen på tumorbiologien fra de andre utplasseringene som Ullernelvene kan søke på, er at den varer en hel uke og er veldig praktisk lagt opp slik at elevene får teste ut mye selv på laboratoriet.

-Det er kjempegøy, og absolutt noe som jeg kunne tenke meg å gjøre videre, sier Ondrej.

Han forteller at han liker å finne ut av nye ting, og at det ser veldig fristende ut å bli forsker basert på nettopp det.

-Det er klart at det blir mye skole å ta igjen etter en uke på utplassering, men det er absolutt verdt det, sier Ondrej.

 

 

Ullern skole og Oslo Cancer Cluster tilbyr syv utplasseringer i året til elever som tar realfag og media. Utplasseringene får virkelige gode tilbakemeldinger fra elevene og mange forfølger et yrke som forsker eller lege etter realfagsutplasseringene.

 

 

Workshop Update: MyData and Blockchain-based innovation in the Digital Health Sector

Oslo Cancer Cluster hosted a workshop co-organized by Alpha Venturi on “MyData and Blockchain-based innovation in the digital Health sector” on 14 November 2016 @ Jónas Einarsson Auditorium. 

Stakeholders and companies from Norway, Finland, United Kingdom and Estonia have been involved in the brainstorming sessions on several aspects of digital health revolution. The Norwegian Health Directorate, Norwegian Centre for E-Health Research and University in Oulu/Digital Health Revolution from Norway and Finland introduced their respective country perspectives on digital healthcare and progress made relative to MyData.

Multinational biopharmaceutical company Amgen presented their views on the potential gains from such an approach. Alpha Venturi iterated the importance of Blockchain and Distributed Ledger Technologies as a potential game changer for Healthcare among other industries. Two foreign companies, Digi.me from UK and Guardtime from Estonia, have also been invited as external speakers to come and present their respective approach to enable access and sharing of personal health data, one of which based on Blockchain, and the pilots they are implementing respectively in Iceland and Estonia among others.

During this workshop, Alpha Venturi and Oslo Cancer Cluster, moderated the discussions on further perspectives on technologies like Blockchain for Health Care and Personalised Medicine. The first half of the workshop included informative presentations from the delegates, and the later half was focused on brainstorming discussions on potential collaborations.

Alpha Venturi will soon release a report from this workshop that will include short-term and long-term visions, recommendations of the activities and innovation projects in digital health space that can be initiated in Norway in partnership with other Nordic countries. You contact the CEO of Alpha Venturi, Wilfried Pimenta de Miranda at: wilfried@alpha-venturi.com

20161114_103338

Given below is the glimpse of the workshop agenda:

Start Activity Min.
8.45 Arrival of the first participants
9.10 Welcome, presentation of participants and background for the initiative

Oslo Cancer Cluster – Gupta Udatha

Alpha Venturi – Wilfried Pimenta de Miranda

20
9.30 Norway: Overview of the e-health situation and roadmap, examples

Norwegian Health Directorate – Erik Hedlund

10
9.40 Norway: Perspectives on ongoing e-health research and innovation related to MyData

Norwegian Centre for E-Health Research – Gustav Bellika

10
9.50 Finland: Overview of the e-health situation and roadmap, examples

Digital Health Revolution – Maritta Perälä-Heape

20
10.10 The changing data landscape and its impact on biopharma

Amgen- Jonathan Doogan

30
10.40 Pause 10
10.50 A person centric example, Health Iceland Living Lab

Digi.me – Julian Ranger and Andrew Carmody

30
11.20 Q&A 20
11.40 Lunch – Open discussions and networking 60
12.40 Introduction to Blockchain + Use cases in the Health sector

Alpha Venturi – Wilfried Pimenta de Miranda

30
13.10 Healthcare pilot for Estonia

Guardtime – Martin Ruubel

30
13.40 Q&A 20
14.20 Pause 10
14.30 How could a person centric approach be applied to a Norway/Finland healthcare sector 30
15.00 How to make personal data available to individuals 30
15.30 Pause 15
15.45 Building a common vision for the partnership, design principles, initial pilot thoughts 45
16.30 Agreement of next steps; creation of working group to follow up from the day 45
17.15 End & Networking until 17.45 30

For further information and discussions on Oslo Cancer Cluster’s digital health projects, please contact our Project Manager D.B.R.K. Gupta Udatha

D.B.R.K Gupta Udatha

Oslo Cancer Cluster and NCE Smart Energy Markets together with four European clusters in medicine and IT managed to land a prestigious Horizon 2020 EU project. The EU project will use innovative IT solutions to develop personalized cancer treatment. Allocated funds are 45 million NOK, of which 34 million NOK are earmarked for small and medium enterprises in the clusters. The EU project with the sounding name “Personalised Medicine Innovation through Digital Enterprise Solutions: PERMIDES”, will utilize digital tools and novel solutions from the IT sector  to support the development of new cancer treatment. This will be achieved by matching small and medium enterprises from the IT and the biopharma sector for joint innovation projects.

View PERMIDES page

Kom med innspill til Helsedatautvalget

Ekspertutvalget for helsedata ønsker innspill fra Oslo Cancer Cluster sine medlemmer om hvordan man kan utnytte opplysninger i sentrale helseregistre, kvalitetsregistre, befolkningsbaserte helseundersøkelser og biobanker på en bedre måte.

Vi ønsker innspill til konkrete organisatoriske, tekniske og juridiske tiltak for å forbedre dagens system for tilgang til helsedata. Dette gjelder både til forskning og til tjenester/innovasjon.

Send dine innspill innen 15.11 til:

Les mer om ekspertutvalget her:

Doctor caring for elderly patient.

Help define gene panel

The Norwegian Research Council-financed project NCGC are joining forces with Norwegian Cancer Registry to establish a research platform for tumor-profiling in recruiting patients for clinical trials.

The objective is to make Norway an even more attractive location for the industry and to meet the industries specific needs. The first step in this work is to define a gene panel. In this connection the project team wants to get in contact with Oslo Cancer Cluster members who can give feedback on what targets should be included.

For more information, please contact:

More about NCGC here: cancergenomics.no 

PERMIDES project going forward with project manager hired

Oslo Cancer Cluster and NCE Smart Energy Markets together with four European clusters in medicine and IT managed to land a prestigious Horizon 2020 EU project this spring. The official kick-off for the project is September 7th to 8th in Karlsrue and project manager Gupta Udatha is hired to work in both Oslo and Halden to implement the project from Norwegian side.

 

Project manager Gupta Udatha He works at both the Norwegian Centres of Expertise located in Eastern Norway, i.e. Oslo Cancer Cluster and Smart Innovation Østfold. The PERMIDES project aims at establishing fruitful collaborations between the bio-pharmaceutical and IT sectors in the European region to advance the field of personalised medicine through the development of novel digital solutions with cancer as the model disease.

– Gupta has an amazing background from bioinformatics and big data analytics of biopharmaceutical data. We are confident he is going to drive this project forward in a satisfactory way, says Ketil Widerberg, CEO Oslo Cancer Cluster and Dieter Hirdes, F & I Coordinator Smart Innovation Østfold company as a leader NCE Smart Cluster in a joint comment.

The PERMIDES project will start 1 September and with a kick-off meeting in Karlsruhe 7th to 8th September.

 

 

PCI Biotech with positive opinion for Orphan Drug Designation

Oslo Cancer Cluster member PCI Biotech has received positive opinion from the European Medicine Agency’s (EMA) Committee for Orphan Medicinal Products (COMP) for its lead product candidate, fimaporfin. Firmaprofin is intended to be used in the treatment of bile duct cancer,  cholangiocarcinoma.

Fimaporfin (AmphinexTM) is in clinical phase I/II development for inoperable bile duct cancer, a disease without approved medicinal treatment and a high need of better local treatment alternatives.

 

About bile duct cancer (cholangiocarcinoma)  
The bile duct drains bile from the liver into the small intestine. Biliary tract sepsis, liver failure and/or malnutrition and cachexia due to locoregional effects of the disease are the most important causes of death. Currently, surgery is the only curative option for these patients; yet the majority of the tumors are inoperable at presentation. Inoperable patients are treated with stenting to keep the bile duct open and with chemotherapy. The combination of gemcitabine and cisplatin has shown promising results and has become standard treatment in some regions, but there is still a need for better treatments to increase overall survival and quality of life.

 

About PCI Biotech         
PCI Biotech is a cancer focused biopharmaceutical company headquartered in Norway and listed on the Oslo Stock Exchange (Axess). The company is developing therapeutic products based on its proprietary photochemical internalisation (PCI) technology. The PCI technology works by inducing triggered endosomal release and may be used to unlock the true potential of a wide array of therapeutic modalities, such as small molecules, vaccines and nucleic acids.  The company has a clinical Phase I/II program in bile duct cancer.

The company is also developing PCI as a vaccination technology. When applied in the emerging field of cancer immunotherapy, PCI can be used to enhance the important cytotoxic effect of therapeutic cancer vaccines. The PCI technology is also very well suited for intracellular delivery of nucleic acids, such as RNA therapeutics. By releasing nucleic acid compounds from endosomes where they are trapped following administration, PCI addresses one of the major bottlenecks facing this emerging and exciting field.  PCI Biotech follows a strategy to create value by improving the effect of existing cancer drugs and by realising the large potential in new therapeutics.

 

Targovax presents encouraging preclinical data on ONCOS-102

The International Journal of Cancer has recently published preclinical in vivo data in a mesothelioma xenograph model, demonstrating synergy of ONCOS-102 with pemetrexed and cisplatin, the current standard of care in malignant pleural mesothelioma. 

 

“These findings give a strong rationale for the clinical testing of ONCOS-102 in combination with pemetrexed and cisplatin in patients suffering from malignant mesothelioma. In fact, we recently started a clinical trial in malignant mesothelioma where this combination will be evaluated” says Lukasz Kuryk of Targovax Research & Development.

Malignant mesothelioma is a rare cancer type, often caused by exposure to asbestos. There are no curative treatments, although surgery, chemotherapy and radiotherapy can sometimes help to improve patient prognosis and life expectancy. Pemetrexed and cisplatin is the standard of care chemotherapy for malignant mesothelioma, but the median PFS/OS (progression-free survival/overall survival) from the initiation of treatment is only approximately 12 months.

ONCOS-102 is a purposefully engineered human serotype 5/3 adenovirus coding for human GM-CSF optimized to induce a systemic anti-tumor T-cell response in cancer patients. In a previous Phase I trial, ONCOS-102 treatment induced tumor specific immune activation both at systemic and lesional level. The immune activation was associated with clinical benefit.

In the present preclinical study, an evaluation was made of the antitumor activity of combination treatment with chemotherapy (pemetrexed, cisplatin, carboplatin) and ONCOS-102 in a xenograft BALB/c model of human malignant mesothelioma. The study demonstrated that ONCOS-102 is able to induce immunogenic cell death of human mesothelioma cell lines in vitro and showed anti-tumor activity in the treatment of the in vivo xenograft model. While chemotherapy alone showed no anti-tumor activity in the xenograph model, ONCOS-102 slowed down the tumor growth. When both ONCOS-102 and chemotherapy were combined, a synergistic anti-tumor effect was observed.

Targovax is currently studying ONCOS-102 in combination with pemetrexed and cisplatin in a randomized Phase Ib/II clinical trial of up to 30 patients with malignant pleural mesothelioma. The trial has a phase Ib safety lead-in cohort of 6 patients. The trial dosed its first patient in June 2016. During 2016, Targovax will also initiate three other clinical trials in various solid tumor indications to study ONCOS-102 in combination with other treatments such as immune checkpoint inhibitors and DC therapy.

 

About Targovax:
Arming the patient’s immune system to fight cancer

Targovax is a clinical stage immuno-oncology company developing targeted immunotherapy treatments for cancer patients. Targovax has a broad and diversified immune therapy portfolio and aims to become a world leader in its area. The company is currently developing two complementary and highly targeted approaches in immuno-oncology.

ONCOS – 102 is a virus-based immunotherapy platform based on engineered oncolytic viruses armed with potent immune-stimulating transgenes targeting solid tumors. This treatment is designed to reactivate the immune system’s capacity to recognize and attack cancer cells.

TG01 and TG02 are part of a peptide-based immunotherapy platform targeting the difficult to treat RAS mutations found in more than 85% of pancreatic cancers, 50% of colorectal cancer and 20-30% of all cancers. Targovax is working towards demonstrating that TG vaccines will prolong time to cancer progression and increase survival.

These product candidates will be developed in combination with multiple treatments, including checkpoint inhibitors in several cancer indications. Targovax also has a number of other cancer immune therapy candidates in the early stages of development.

Find more info on www.targovax.no 

 

Targovax recruits the first patient in a trial with the oncolytic virus ONCOS-102 in malignant pleural mesothelioma

Oslo 1 July 2016: Targovax today announced that the first patient has been dosed in a phase Ib/II clinical trial evaluating ONCOS-102 for the treatment of malignant pleural mesothelioma (MPM), a rare type of cancer in the lining of the lung, in combination with pemetrexed and cisplatin.

 

“New therapies are needed to provide better care for patients with mesothelioma, a highly malignant cancer with poor prognosis” says Dr Magnus Jaderberg, CMO of Targovax. “This clinical trial will provide data to evaluate the efficacy and safety of ONCOS-102 in first and second line mesothelioma patients, and we hope that our immunotherapy can provide additional benefit to chemotherapy, the existing standard of care.,

 

“In addition, treating the first patient in the first oncolytic virus trial of the merged company is of course an exciting moment for Targovax and all its stakeholders” adds Dr Jaderberg.

 

The trial is a randomized phase I/II clinical trial of 30 patients, with a phase Ib safety lead-in cohort of six patients, in first line and second line MPM patients who are eligible for treatment with pemetrexed and cisplatin. The trial’s main objectives are determination of safety, immune activation at lesional level and in peripheral blood, clinical response and the correlation between clinical outcome and the immunological activation. Several investigational sites in Europe will participate in this study. In addition to this trial, Targovax plans to initiate three immunotherapy combination trials with ONCOS-102 and one with its RAS peptide vaccine TG02 during the second half of 2016.

 

Malignant mesothelioma is a rare type of cancer often caused by exposure to asbestos. There are no curative treatments although surgery, chemotherapy and radiotherapy can sometimes help to improve patient prognosis and life expectancy. Pemetrexed and cisplatin is the only standard of care chemotherapy for malignant mesothelioma, but the median PFS/OS (progression-free survival/overall survival) from the initiation of treatment is only approximately 12 months.

 

ONCOS-102 is a purposefully engineered human serotype 5/3 adenovirus coding for human GM-CSF optimized to induce systemic anti-tumor T cell response in cancer patients. In a previous Phase I trial, ONCOS-102 treatment induced tumor specific immune activation both at systemic and lesional level. The immune activation was associated with clinical benefit.

For further information, please contact:

 

Gunnar Gårdemyr, CEO
Phone: +46 73 083 77 79
Email: ggardemyr@targovax.com

 

Øystein Soug, CFO
Phone: +47 906 56 525
Email: oystein.soug@targovax.com

 

Arming the patient’s immune system to fight cancer
Targovax is a clinical stage immuno-oncology company developing targeted immunotherapy treatments for cancer patients. Targovax has a broad and diversified immune therapy portfolio and aims to become a world leader in its area. The company is currently developing two complementary and highly targeted approaches in immuno-oncology.

 

ONCOS – 102 is a virus-based immunotherapy platform based on engineered oncolytic viruses armed with potent immune-stimulating transgenes targeting solid tumors. This treatment is designed to reactivate the immune system’s capacity to recognize and attack cancer cells.

 

TG01 and TG02 are part of a peptide-based immunotherapy platform targeting the difficult to treat RAS mutations found in more than 85% of pancreatic cancers, 50% of colorectal cancer and 20-30% of all cancers. Targovax is working towards demonstrating that TG vaccines will prolong time to cancer progression and increase survival.

 

These product candidates will be developed in combination with multiple treatments, including checkpoint inhibitors in several cancer indications. Targovax also has a number of other cancer immune therapy candidates in the early stages of development.

DoMore! receives Lighthouse project grant from the Norwegian Research Council

The Norwegian Research Council IKTPLUSS has selected The DoMore! project application as one of the 3 winners of the prestigious Lighthouse Project grant. The Lighthouse Project winning proposals were announced at the Norwegian E-health conference on the 26th april 2016.

 

The DoMore! project aims to explore the unique combination of academic and industrial competence within the project group to radically improve prognostication and hence treatment of cancer by using digital tools for pathology. ​The DoMore! project focuses on heterogene​​ity in cancer​ and is led by Institute Director Håvard Danielsen.​

​By largely digitalizing and automating diagnostics and prognostication of cancer, we can literally DoMore! and analyze a ​greater number of samples from the same tumor​,​ ​leading to a more precise diagnosis for each patient​ ​​​​Safe storage, analysis and prosessing of the​ ​B​ig ​D​ata​ the project will produce will also be handled by the project partners.

The ​DoMore!​ ​team ​is composed ​of experts within several fields, including: digital imaging, processing, robotics, pathology, cell biology, surgery and oncology, both in Norway and abroad​​. ​​Together, we will create solutions that will​​ ​​​​allow​ us to DoMore!, resulting in objective cancer diagnostics that can be made available to all patients.

Oslo Cancer Cluster & NCE Smart Energy Markets: Partners in prestigious Horizon 2020 EU project of 45 MNOK

Oslo Cancer Cluster and NCE Smart Energy Markets together with four European clusters in medicine and IT managed to land a prestigious Horizon 2020 EU project. The EU project will use innovative IT solutions to develop personalized cancer treatment. Allocated funds is 45 million, of which 34 million is earmarked for small and medium enterprises in the clusters.

 

The EU project has the sounding name “Personalised Medicine Innovation trough Digital Enterprise Solutions: PERMIDES”, will utilize the digital revolution to develop new systems for cancer treatment. This will be achieved by matching the small and medium enterprises within IT with cancer biotechs in the six clusters. This matching shall take place both virtually and physically. Utilization of accumulated expertise in Big Data Analytics from other industries, such as energy industry, will enable the development of digital systems and solutions.

 

Developing cancer treatment smarter

– More and more people are diagnosed with cancer, both because the population is steadily increasing, but also because people get older. There is a crying need for innovative cancer treatment. Health care institutions as well as many biotech companies are lagging behind in adopting the latest digital solutions. For Norway in a time of souring oil prizes and in need of new industries, PERMIDES is an important project that will develop solutions for tomorrow’s business community, says Ketil Widerberg, CEO of Oslo Cancer Cluster.

 

Digital revolution from energy to medicine

– The world has just begun to discover the enormous potential Big Data Analytics will represent for society and business. PERMIDES will contribute to research that may save the lives of many people in the coming years. It is the unique competence across clusters that is the core of this project: The transfer of unique Big Data Analytics expertise from smart energy to personalized medicine, says Dieter Hirdes, F & I Coordinator Smart Innovation Østfold company as a leader NCE Smart cluster .

 

Excellent revue

PERMIDES succeed in landing the EU support as one of five projects of 115 applications. It received a score of 14 of a possible 15, and is thus in the top range. Those companies that match each other can get up to 600 000 NOK in direct support. PERMIDES ends in 2019, and the goal is then that:

  • 120 IT companies and cancer biotechs have benefited from technology transfer activities
  • 75 enterprises have participated in networking conferences at regional and European level
  • 100 companies have placed its profile in a semantic matchmaking portal
  • 90 innovation projects is ongoing between IT and cancer biotechs through a voucher system

 

Facts

Oslo Cancer Cluster and NCE Smart Energy Markets are two of 14 clusters in the Norwegian Centres of Expertise program.

Oslo Cancer Cluster is a research and industrial cluster within cancer and gathers over 75 research institutions, hospitals, biotech firms and biopharmaceutical companies from all over Norway and Northern Europe. The cluster’s vision is to accelerate the development of innovative cancer treatments for the benefit of cancer patients. In August 2015 Oslo Cancer Cluster Innovation Park and Incubator opened its premises next to the Radium Hospital in Oslo. The incubator aims to contribute to more entrepreneurial businesses based on cancer research: Today the Incubator comprise of lab and office space to more than 25 institutions: www.oslocancercluster.no // www.occincubator.com.

 

Smart Innovation Østfold heads NCE Smart Cluster and has since 2009 initiated or participated in 20 different research and innovation projects (F & I) with a total budget of over 300 MNOK. Four of which are EU projects. Smart Innovation Østfold heads Horizon 2020 project EMPOWER with a budget of more than NOK 60 million. NCE Smart cluster comprise of a number of IT companies and academic communities who hold the leading expertise in Big Data Analytics now used in smart energy. The technology is generic, and it is therefore great potential to transfer this expert knowledge to applications in personalized medicine.

 

 “Personalised Medicine Innovation trough Digital Enterprise Solutions: PERMIDES»

Participants: Six clusters and two industrial partners in IT.

  • Oslo Cancer Cluster SA
  • SMART INNOVATION ØSTFOLD
  • TECHNISCHE Universitaet DARMSTADT
  • Cluster Individualisierte Immunintervention (CI3)
  • intelligent views gmbh
  • NETSYNO Software
  • ONCOTYROL-CENTER FOR Personalized CANCER MEDICINE
  • BUSINESS UPPER AUSTRIA

Photocure: First patient enrolled in Hexvix®/Cysview® Phase 3 study on bladder cancer

Oslo Cancer Cluster member Photocure announces that the first patient has been enrolled in the Hexvix/Cysview Market Expansion Phase 3 study on bladder cancer. The study will investigate the use of Hexvix/Cysview in the outpatient / surveillance setting and is designed to fulfill the FDA post marketing commitments. Results from the Phase 3 study are expected to be available in 2017.

The study is a prospective, multicenter Phase 3 study comparing the detection and potential positive impact on patient management of bladder cancer in the outpatient setting with Hexvix/Cysview using Blue Light enabled flexible cystoscopy versus white light flexible cystoscopy. Eighteen top rated cancer hospitals in the USA will participate in the study, which is planned to enroll approximately 360 patients with non-muscle invasive bladder cancer.

There are approximately 1.2 million flexible cystoscopy procedures conducted on a yearly basis in the United States. The use of Blue Light Flexible Cystoscopy with Hexvix/Cysview in the outpatient / surveillance setting could allow Urologists to detect recurrences at an earlier stage, which is of great clinical benefit. Furthermore, as has been demonstrated with the current use of Hexvix/Cysview during bladder cancer resection with blue light rigid cystoscopes, the addition of Hexvix/Cysview in the surveillance of bladder cancer patients may lead to better and earlier patient management decisions resulting in improved clinical outcomes and health economic savings.

Dr. Raj Pruthi, Professor and Chair, Department of Urology, University of North Carolina, Chapel Hill said: “The positive benefits of Hexvix/Cysview are well documented in numerous trials for patients undergoing bladder cancer resections during cystoscopy examination in the operating room. We are looking forward to conducting the study with Blue Light Flexible Cystoscopy with Hexvix/Cysview to confirm the benefits of this technology also in the outpatient setting. Early detection of more lesions is expected to result in better treatment decisions as well as more appropriate referrals and follow-up regimens, which in turn will reduce the burden on patients and the health care system.”

Kjetil Hestdal, President & CEO said: “This is an important milestone for Photocure as we seek to expand the use of Hexvix/Cysview into the bladder cancer surveillance market. Enabling Blue Light flexible cystoscopy with Hexvix/Cysview in the surveillance setting will allow patients with non-muscle invasive bladder cancer access to optimal treatment earlier, resulting in improved long-term benefits for these patients. While this trial is ongoing in the USA, we will be obtaining additional clinical and health economic data in EU from the use of Hexvix/Cysview in the same setting in order to optimize best clinical practices and patient outcomes.”

For more information about the clinical trial: https://clinicaltrials.gov/ct2/show/NCT02560584

 

 

About Photocure ASA

Photocure ASA, headquartered in Oslo, Norway, is a specialty pharmaceutical company and world leader in photodynamic technology. Based on our unique proprietary Photocure Technology® platform, Photocure develops and commercializes highly selective and effective solutions in disease areas with high unmet medical need, such as bladder cancer, HPV and precancerous cervical lesions, colorectal cancer and skin conditions. Our aim is to provide solutions that can improve health outcomes for patients worldwide. Photocure is listed on the Oslo Stock Exchange (OSE: PHO). Information about Photocure is available at www.photocure.com.

About Hexvix®/Cysview®

Hexvix®/Cysview® (hexaminolevulinate hydro-chloride) is an innovative breakthrough technology in the diagnosis and management of non-muscle-invasive bladder cancer. It is designed to selectively target malignant cells in the bladder and induce fluorescence during a cystoscopic procedure using a blue-light enabled cystoscope. Using Hexvix®/Cysview® as an adjunct to standard white-light cystoscopy enables the urologist to better detect and remove lesions, leading to a reduced risk of recurrence. Hexvix®/Cysview® is approved in Europe, Canada and the USA.

This information is subject of the disclosure requirements acc. to §5-12 vphl (Norwegian Securities Trading Act)

NLSDays 2015: Meet international life science leaders and discuss the sector’s future at the Nordic region’s largest partnering meeting

NLSDays September 9-10 at Stockholm Waterfront is the Nordic region’s premier life science event. The global life science sector is undergoing major structural changes, and as part of a strong established hub, companies in Sweden and the Nordic countries are of great interest when international investors and corporations are looking for new partners.

The entire value chain from basic research to the introduction of new therapies is subject to transformation – not least due to rapid developments in digital health. Life science companies therefore need to find new ways to collaborate and fund their projects. Since the Nordic region offers a modern, competitive environment for academia and research companies alike, the region has become highly attractive for the global life science industry.

  • NLSDays has become the most important meeting place for global investors and corporations that are looking for new collaborations in the Nordic region. The event is on course for record numbers and deals such as the recent one between Alligator Bioscience and Janssen Biotech which illustrates that Swedish companies offer major value to partners, says Jonas Ekstrand, CEO SwedenBIO, the Swedish national life science industry organization which founded the event three years ago.

Overall, the life science sector is currently very active in the Nordic countries. For example, the Oslo Cancer Cluster Innovation Park, an investment of around 100 million Euros opens today (24 August). Furthermore, AstraZeneca recently announced a Euros 260 million investment in a new plant for bio-pharmaceutical production and from January 2014, 18 life science companies across all subsectors from medtech to biopharma have been listed on Nasdaq Nordic at a combined value of about Euros 250 million (Source Nasdaq). Furthermore, initiatives and companies in new areas such as personalized medicine, digital health and outcomes based provision are emerging at an accelerating pace.

During Nordic Life Science Days 2015 the main theme is “The New Value Chain”. The 2 day program covers several sessions in which international life science leaders will discuss strategies on how new partnerships can be established and how medical research and the life science industry in the Nordics can contribute.

Super Sessions from the program:

  • International Investors (9 September at 11.30 – 12.30)

International life science investors talk about their investment models and what they look for from entrepreneurs.

  • Personalized Healthcare – Matching Medicines to Patients (September 10 at 08:45 – 09-45)

How will big data and new diagnostic methods impact the future of medical research and treatment modalities? Listen to how the Digital Doctor Watson can revolutionize health care.

  • Oncology 2025 (10 September 11.30 – 12.30)

Immuno-oncology is hotter than ever and there is an ongoing competition between the big global companies to take on the most promising projects. Representatives from several of the major players talk about their strategies.

Currently, 800 delegates are registered for this year’s NLSDays, which is 33% more than at the corresponding time last year. This strongly indicate that the meeting will attract over 1,000 participants, outnumbering last year’s number of delegates.

The conference is organized September 9-10, 2015 at Stockholm Waterfront Congress Centre, Nils Ericssons Plan 4 in Stockholm. More info on www.nlsdays.com.

 

About NLSDays

Founded in 2012 the Nordic Life Science Days has grown rapidly to become the largest Nordic partnering conference for the global life science industry. In 2014, 890 delegates from 28 countries attended the meeting. The 580 companies attending offered 490 licensing opportunities in the partnering system and during the two days 1600 one-on-one meetings were scheduled. Among the investors and big pharma already registered for the meeting in September 2015 are AbbVie, Alexion, Almi Invest, Astellas, AstraZeneca, Bayer HealthCare, Boehringer Ingelheim, Bristol-Myers Squibb, Cadila Pharma, Johnson & Johnson, HealthCap, Industrifonden, Karolinska Development, Merck-MSD, Novartis, Pfizer, Pierre Fabre, P.U.LS. AB, Recipharm, Roche, Seventure Partners, SR-One.

In addition to partnering, NLSDays also offers an exhibition and a seminar program with 10 super session and four topic specific workshops. Speakers include senior representatives from the global life science companies, investors, and academic leaders who will all share their expertise and views for the future.

About SwedenBIO

SwedenBIO who is the founder and organizer of the Nordic Life Science Days is the Swedish life science industry organization. Our nearly 200 members operate across all sub-sectors from pharmaceutical, biotechnology, medical technology to diagnostics. SwedenBIO serves to the benefit the entire life science industry in Sweden and is a member-driven, private, non-profit organization. The main objective is to improve the conditions for the life science industry for the benefit of industry growth and business development.

 

Oncology Super Session in Stockholm

Oslo Cancer Cluster is hosting a Super Session at the Nordic Life Science Days in Stockholm. International thought leaders will discuss current game changing innovations and their impact on the industry in the years ahead.

Oncology is at the forefront of realizing the promises of precision medicine. Huge and complex datasets are exploited for novel drug development as well as for informed and real-time care decisions. Emerging Cancer immunotherapies represent a paradigm shift for cancer treatment triggering a global R&D race and novel partnerships. Furthermore, the convergence of the genetics and digital revolution creates novel types of products, companies and growth opportunities transforming the sector.

 

Moderator: Mr. Richard Godfrey, CEO, BergenBio, Norway

Session Outline:

 

Min Topic Speaker
5 Introduction by moderator ·        Dr. Richard Godfrey, CEO BerGenBio

 

10 Topic 1 –global company – perspectives from industry leader – Precision Medicine ·        Dr. Vaios Karanikas, Senior Biomarker and Experimental Medicine Leader, Tumor Immunology, Roche Pharmaceutical Research and Early Development, Innovation Center Zurich
10 Topic 2 – Digital Health company – Big Data / artificial intelligence -> impact on cancer R&D and care ·        Dr. Anthony Bak, Principal Data Scientist, Ayasdi
10 Topic 3 – global company – perspectives from industry leader – Immuno-Oncology ·        Dr. Tim Fisher, Global Lead, Immuno-Oncology / Oncology, Search & Evaluation, Bristol-Myers Squibb
25 Panel Discussion ·        All speakers, joined by Dr. Erik Lund, Director, Worldwide Licensing at MSD (Merck & Co., Inc.)

 

Target Audience: Start-ups, Biotechs, Pharma, investors, academic innovators, TTOs

 

255 MNOK to biomedical research

The Norwegian Research Council recently announced four large investments in biomedical research on a total of 255 MNOK.

Of these investments, 60 MNOK will go to to sequencing and precision medicine, 80 MNOK to national biobanks, 65 MNOK to brain research and 50 MNOK to Norwegian Clinical Research Infrastructure Network.

– This is great news. Biomedical research affects not only a nation’s health, but international competitiveness too, says Ketil F. Widerberg, General Manager in Oslo Cancer Cluster in a comment.

For more information: http://www.forskningsradet.no/no/Nyheter/13_milliarder_til_forskningsutstyr/1254010677263/p1174467583739

Great media interest in immunotherapy against cancer

On June 11 Oslo Cancer Cluster and  Norwegian Cancer Society arranged a breakfast meeting on immunotherapy against cancer. Norwegian media showed huge interest in the topic. Below we have collected some of the coverage – and we know more is coming.

Grand Opening of the Oslo Cancer Cluster Innovation Park

When the Prime Minister opens the Oslo Cancer Cluster innovation Park at Montebello in August, the founder Jónas Einarsson are already planning the next steps for the Radium Hospital Innovation Campus.

Monday August 24th is the official opening of the Oslo Cancer Cluster Innovation Park. This unique project is built on private enthusiasm and builds on the long history of cancer research and treatment performed at the Norwegian Radium Hospital. The Innovation Park includes Ullern High School, The Cancer Registry of Norway, Oslo Cancer Cluster Incubator, and Institute for Medical Informatics and Pathology at Oslo University Hospital – as well as global biopharmaceutical and biotech companies.

Integrated high school
Early 2000, Jónas Einarsson, CEO at the Radium Hospital Research Foundation, and Kaare Norum, former principal of the University of Oslo, realized that a natural cluster for cancer research, development and innovation emerged in the Oslo-area. Together they established Oslo Cancer Cluster, a research and industry cluster within cancer.

They soon realized that the milieu needed a physical innovation center for collaboration, innovation and networking across disciplines. The idea of an innovation park were born, optimally placed right next to the Norwegian Radium Hospital and with Ullern High School as an integrated part to attract and develop talents to cancer R&D and entrepreneurship.

“As a former principal and a man with education as his focus, Kaare Norum came up with the idea to integrate Ullern High School,” says Einarsson. “Ullern and principal at that time, Paal Riis, was very positive from day one, “Einarsson explains, “The collaboration started in 2009 and is expanding every year, and we look forward to being located in the same building.”

All ready for next steps
Oslo Cancer Cluster Innovation Park aims to create one of Europe’s leading centers for education, research and industry in cancer. “By building the park right next to the hospital and Institute for cancer research, the value chain from basic research to industry is brought together at one place: The Radium Hospital Innovation Campus.

Einarsson is already planning the next steps to strengthen the campus further; “We will expand with more buildings and facilities,” he says. “The need for a new clinic building at the Radium Hospital is urgent, and the Oslo-area lack a center for proton treatment. We have investors and drawings in place already”.

Unique project
“We are honoured to have Prime Minister Erna Solberg opening Oslo Cancer Cluster Innovation Park. Governing Mayor of Oslo, Stian Berger Røsland and Head of Oslo University Hospital, Bjorn Erikstein are also part of this celebration “ says  Arne Baumann, Chairman of the Board of the Innovation Park. “We look forward to show them the uniqueness of this project; the park integrates education, excellent research and innovations, and represents a real opportunity to make biotech and health research a new Norwegian industry. Oslo Cancer Cluster Innovation Park is really one of a kind,” Baumann states.

 

Facts:

Oslo Cancer Cluster Innovation Park AS

Total space: 36 000 m²

Tenants: Oslo university Hospital, The Institute for Cancer Genetics and Informatics, Norwegian Cancer registry, Oslo Cancer Cluster SA, Oslo Cancer Cluster Incubator AS, The Norwegian Radium Hospital Research Foundation, The Oslo Hospital Pharmacy, Ullern High School, global pharma companies, Norwegian biotech companies.

Opens officialy August 24.th 2015 by the Prime Minister of Norway, Erna Solberg.

Supercomputing reveals the genetic code of cancer

Cancer researchers in Oslo are now using one of the world’s fastest computers to detect which parts of the genetic code may cause bowel and prostate cancer.


Written by Yngve Vogt, Apollon. Read the original article in English here and in Norwegian here. Published on www.oslocancercluster.no with permisson from the author.

Cancer researchers must use one of the world’s fastest computers to detect which versions of genes are only found in cancer cells. Every form of cancer, even every tumour, has its own distinct variants.

“This charting may help tailor the treatment to each patient,” says Associate Professor Rolf Skotheim, who is affiliated with the Centre for Cancer Biomedicine and the Research Group for Biomedical Informatics at the University of Oslo, as well as the Department of Molecular Oncology at Radiumhospitalet, Oslo University Hospital.

His research group is working to identify the genes that cause bowel and prostate cancer, which are both common diseases. There are 4,000 new cases of bowel cancer in Norway every year. Only six out of ten patients survive the first five years. Prostate cancer affects 5,000 Norwegians every year. Nine out of ten survive.

Comparisons between healthy and diseased cells
In order to identify the genes that lead to cancer, Skotheim and his research group are comparing the genetic material in tumours with the genetic material in healthy cells. In order to understand this process, a fast introduction to our genetic material is needed.

Our genetic material consists of just over 20,000 genes. Each gene consists of thousands of base pairs, represented by a specific sequence of the four building blocks adenine, thymine, guanine, and cytosine, popularly abbreviated to A, T, G, and C. The sequence of these building blocks is the very recipe for the gene. Our whole DNA consists of some six billion base pairs.

The DNA strand carries the molecular instructions for activity in the cells. In other words, DNA contains the recipe for proteins, which perform the tasks in the cells. DNA, nevertheless, does not actually produce proteins. First a copy of DNA is made. This transcript is called RNA, and it is this molecule that is read when proteins are produced.

RNA is only a small component of DNA, and is made up of its active constituents. Most of DNA is inactive. Only 1–2 % of the DNA strand is active.

In cancer cells, something goes wrong with the RNA transcription. There is either too much RNA, which means that far too many proteins of a specific type are formed, or the composition of base pairs in RNA is wrong. The latter is precisely the area being studied by the UiO researchers.

Wrong combinatorics
All genes can be divided into active and inactive parts. A single gene may consist of tens of active stretches of nucleotides (exons).

“RNA is a copy of a specific combination of the exons from a specific gene in DNA.”

There are many possible combinations, and it is precisely this search for all of the possible combinations that is new in cancer research.

Different cells can combine the nucleotides in a single gene in different ways. A cancer cell can create a combination that should not exist in healthy cells. And as if that didn’t make things complicated enough, sometimes RNA can be made up of stretches of nucleotides from different genes in DNA. These special, complex genes are called fusion genes.

In other words, researchers must look for errors both inside genes and between the different genes.

“Fusion genes are usually found in cancer cells, but some of them are also found in healthy cells.”

In patients with prostate cancer, researchers have found some fusion genes that are only created in diseased cells. These fusion genes may then be used as a starting-point in the detection of and fight against cancer.

The researchers have also found fusion genes in bowel cells, but they were not cancer-specific.

“For some reason, these fusion genes can also be found in healthy cells. This discovery was a let-down.”

Can improve treatment
There are different RNA errors in the various cancer diseases. The researchers must therefore analyse the RNA errors of each disease.

Among other things, the researchers are comparing RNA in diseased and healthy tissue from 550 patients with prostate cancer. The patients that make up the study do not receive any direct benefits from the results themselves. However, the research is important in order to be able to help future patients.

“We want to find the typical defects associated with prostate cancer. This will make it easier to understand what goes wrong with healthy cells, and to understand the mechanisms that develop cancer. Once we have found the cancer-specific molecules, they can be used as biomarkers. In some cases, the biomarkers can be used to find cancer, determine the level of severity of the cancer, the risk of spreading, and whether the patient should be given a more aggressive treatment.

Even though the researchers find deviations in the RNA, there is no guarantee that there is appropriate, targeted medicine available.

“The point of our research is to figure out more of the big picture. If we identify a fusion gene that is only found in cancer cells, the discovery will be so important in itself that other research groups around the world will want to begin working on this straight away. If a cure is found that counteracts the fusion genes, this may have enormous consequences for the cancer treatment.”

Laborious work
Recreating RNA is laborious work. The set of RNA molecules consists of about 100 million bases, divided into a few thousand bases from each gene.

The laboratory machine reads millions of small nucleotides. Each one is only one hundred base pairs long. In order for the researchers to be able to place them in the right location, they must run large statistical analyses. The RNA analysis of a single patient can take a few days.

All of the nucleotides must be matched with the DNA strand. Unfortunately the researchers do not have the DNA strands of each patient. In order to learn where the base pairs come from in the DNA strand, they must therefore use the reference genome of the human species.

“This is not ideal, because there are individual differences.”

The future potentially lies in fully sequencing the DNA of each patient when conducting medical experiments.

Supercomputing
There is no way the research can be carried out using pen and paper.

“We need powerful computers to crunch the enormous amounts of raw data. Even if you spent your whole life on this task, you would not be able to find the location of a single nucleotide. This is a matter of millions of nucleotides that must be mapped correctly in the system of coordinates of the genetic material. Once we have managed to find the RNA versions that are only found in cancer cells, we will have made significant progress. However, the work to get that far requires advanced statistical analyses and supercomputing,” says Rolf Skotheim.

The analyses are so demanding that the researchers must use the University’s supercomputer, which was ranked as one of the world’s fastest computers a few years ago. It is 10,000 times faster than a regular computer.

“With the ability to run heavy analyses on such large amounts of data, we have an enormous advantage not available to other cancer researchers. Many medical researchers would definitely benefit from this possibility. This is why they should spend more time with biostatisticians and informaticians. RNA samples are taken from the patients only once. The types of analyses that can be run are only limited by the imagination.”

“We need to be smart in order to analyse the raw data. There are enormous amounts of data here that can be interpreted in many different ways. We have just got started. There is lots of useful information that we have not seen yet. Asking the right questions is the key. Most cancer researchers are not used to working with enormous amounts of data, and how to best analyse vast data sets. Once researchers have found a possible answer, they must determine whether the answer is chance or if it is a real finding. The solution is to find out whether they get the same answers from independent data sets from other parts of the world.”

By Yngve Vogt

Oslo Cancer Cluster events on World Cancer Day

February 4th is World Cancer Day. Oslo Cancer Cluster will pay tribute to this day by arranging a breakfast meeting at Litteraturhuset together with LMI. This breakfast meeting is the first of a series of three political breakfast meetings in 2015, addressing  the topic “Future cancer treatment – how to secure Norwegian cancer patients the best treatment in the future?”

Our first breakfast meeting on World Cancer Day, February 4th, address “clinical cancer studies”: Why is clinical cancer studies important to convey in Norway, what are the unique advantages for conducting studies in Norway and in what way are experimental cancer studies a vital part of access to the latest treatment available for cancer patients not responding to standard treatments.

The political breakfast meetings aim to contribute to ensure that Norwegian cancer patients receive a treatment that is on par with the best internationally, to ensure political involvement and come up with concrete proposals for improving the framework conditions for Norwegian cancer research- and treatment.

Target groups for the meetings are health politicians and authorities, members companies from Oslo Cancer Cluster and LMI, patients and everyone interested in the topics.

The meeting is open for the public and free of charge. Please register here.

 

Afternoon member meeting
On World Cancer Day we also arrange the first member meeting of 2015, addressing the topic og conjugated antibodies. Program will follow – but you may already register here. Please note that this is a meeting only for members of the Oslo Cancer Cluster.

 

 

Innovation Camp on personalized cancer medicine

Almost 350 students at Oslo and Akershus University College of Applied Sciences was engaged in last weeks Innovation Camp where they were asked to come up with original ideas on how to communicate personalized cancer medicine.

Photo: Cicilie S. Andersen/Khrono

 

Last week Oslo Cancer Cluster, Young Entrepreneurship Oslo, Oslo and Akershus University College of Applied Sciences (HIOA) and researchers from Institute for Cancer Research at Oslo University Hospital teamed up. The reason for teaming up was this year’s Innovation Camp at HIOA for no less than 350 students from the faculties of both health and engineering. In collaboration, we had decided to let the students solve the following task in only 24 hours:

“It is important to give correct and realistic information about what personalized cancer medicine is. Please develop a (physical) product that communicates the essence of what personalized cancer medicine is. Please define your target group, for example students, adults, elderly, health personnel or politicians.”

The students were divided into groups of 4-5 people randomly – and then had 24 hours to come up with an idea, make a business plan and pitch it in a semi-finale before a jury.

 

Challenging assignment

The students were taken a bit back about the assignment at first – thinking it was almost impossible to solve. How ever it turned out that they were much clever than they thought them selves.

Before the assignment was presented they had been given a lecture on innovation and creativity by Kim Østberg Larsen from Young Entrepreneurship Oslo and a lecture on the concept of personalized cancer medicine from Leonardo Meza-Zepeda – plus a lecture on how cancer patient are treated with drugs that are classified as personalized by clinician Åslaug Helleland.

As Meza-Zepeda pointed out – the concept of personalized cancer medicine is unknow even for most of health personell – so there is a great need for communicating what this is, what is the upside are and of course the limitations.

 

Interactive game with cartoon caracters
After a hectic semi-finale round with more than 60 groups pitching in three parallel sessions, 9 groups where selected to go to the grand finale. Common for the groups that were selected was originality and a good understanding of the assignment and a good idea to solve it.

The jury decided on the three differet winners of the awards “Best Pitch”, “Best Innovation” and “Overall winner”.

The “Overall winner” turned out to be the same as the winner of the “Audience Award” that all the participants voted on. This was group nr. 1. They suggested to develop an interactive game for children diagnosed with cancer, using known and loved cartoon characters – where the children could play doctors combating cancer. As the group pointed out in their presentation: this would empower the children whilst giving them both knowledge and comfort.

The winners get an “Innovation Lunch” with the cancer researchers at Oslo University Hospital, including a guided tour to their labs and also inside the Oslo Cancer Cluster Innovation Park that is being built now.

 

Please read more about the Innovation Camp here:

 

 

 

 

Great Kick-off for Oslo Cancer Cluster Innovation Park

More than 170 people kicked-off the Oslo Cancer Cluster Innovation Parkat the annual Oslo Cancer Cluster Summer Meeting. The Innovation park opens in less than a year, and for the first time participants from the cluster could come in side the Park.

 

 

Program

–15:00: Registration & coffee

15:00– 15:20: “Welcome – update on main projects”
– Ketil Widerberg, General Manager of Oslo Cancer Cluster

15:20–15:40: “The Radium Hospital Innovation Campus”
– Jan Vincent Johannessen, CEO Radium Hospital Foundation

15:40–16:00: “Ullern High School – Spring 2015”
– Esther Eriksen, Ullern High School

16:00–16:20: “Oslo Cancer Cluster Innovation Park”
– Jónas Einarsson, CEO of The Radium Hospital Research Foundation, founder of the Innovation Park

16:40–17:00: Refreshments

17:00–18:00: “New Kids on the Block” – presentations from new members;
• Teva Scandinavia, Asker
• Smartfish, Oslo
• Pharmalink, Stockholm
• NorChip, Hurum
• Oncoimmunity, Oslo
• SFF – Centre for Cancer Biomarkers, Bergen

18:00: Summer networking with exclusive group tours “inside” the Oslo Cancer Cluster Innovation Park guided by Skanska

 

 

Trying out life as oncology researchers

Six biology students from Ullern High School were selected to intern at the Department of Tumor Biology at Oslo University Hospital in week 50. This is the fourth time the department has had students from Ullern interning, says researcher Birgit Engesæter. Together with her research colleague Siri Tveito, she is in charge of the students – learning them the tricks and trades of working in an oncology lab.

The day Oslo Cancer Cluster drops by the students are busy looking at melanoma cells: they are measuring the protein levels in cell lysate to later see whether a treatment has been effective or not in inhibiting the growth of the skin cancer cells.

“This is very close to what we do in our daily life here at the department, so the students get a pretty good idea on how it is to be an oncology researcher. The treatment the students are studying today for instance was available on the market only short time ago,” says Engesæter.

 

Highly motivated and very grateful
Thea, Sofie, Marte, Helge, Ildri and Gabriella have divided into three groups and are all highly concentrated on the protocol, checking out with Engesæter occasionally whether they are doing the right thing. All of them have biology, chemistry and mathematics at school, but they have not had so much lab work in biology – a bit more in chemistry.

“The first day they struggle a bit with the equipment, but then they get the feeling with it. In the end of the week they are more or less experts with the pipettes.” says Engesæter.

The six students are highly motivated for their week as oncology researchers, as they have been selected after an internal application round among all the biology students at Ullern. Some of them were even interning at the Norwegian Institute for Public Health and at the Department of Medical Physics, Oslo University Hospital earlier in 2013.

“We are so lucky to get this chance to actually come here to the hospital and learn from real researchers and work in the lab. We are very grateful,” say several of the students impulsively, more than once.

But they are not so sure they actually would like to become researchers, due to the tough working conditions. When we ask them what they would like to study, they mention medical school and engineering studies where they earn a profession.

But first they have some days left at the department, learning even more oncology research and presenting a small talk on what they have learnt this week.

 

Educational agreement
The students are interning at the Department of Tumor Biology due to the educational agreement between Oslo Cancer Cluster and Ullern High School. The educational agreement brings into life the common vision Oslo Cancer Cluster an Ullern High School share of educating the researchers and entrepreneurs of tomorrow.

In 2015 Ullern High School with 900 students will be integrated in the Oslo Cancer Cluster Innovation Park currently under construction next to the Norwegian Radium Hospital at Montebello in Oslo.

 


Upcoming activities  in 2014 –
educational agreement between Oslo Cancer Cluster and Ullern High School:


January

14th:
Competence development course for the teachers at Ullern High School as well as other schools in Oslo on nutrition with Kaare Norum, former principal of University of Oslo and one of the Oslo Cancer Clusters initiators.

February

3rd – 5th:
Six chemistry students interning at the Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital.

10th – 11th:
Gründer Camp -a collaborative project between Novartis, Junior Achievement Young Enterprise, Norway – as well as Oslo Cancer Cluster and Ullern High School, involving 60 biology students. Taking place at the Institute for Cancer Research, Oslo University Hospital.

10th – 14th:
Six media students interning at Oslo Cancer Cluster, will document the Gründer Camp.

10th – 14th
Six physics students interning at the Department of Medical Physics, Oslo University Hospital.

March – April

Educational Day in Entrepreneurship for approximately 180 students.

April

1st – 4th:
6 biology students interning at the Division of Infectious Disease Control at the Norwegian Institute of Public Health.