News regarding Oslo Cancer Cluster

Tre viktige temaer i helsenæring

Næringskomiteens innstilling om helsenæringsmeldingen er klar. Dette mener Oslo Cancer Cluster om tre viktige temaer i innstillingen.

Næringskomiteens innstilling om helsenæringsmeldingen trekker frem mange viktige aspekter ved norsk helsenæring. Helse- og omsorgskomiteen kommenterer også meldingen i samme innstilling.

Oslo Cancer Cluster ønsker å kommentere spesielt tre temaer som disse to komiteene tar opp i innstillingen til Stortinget.

– Nå er det viktig at alle som ønsker en sterk norsk helsenæring følger opp hva meldingen betyr i praksis, sier Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

Kliniske studier

Komiteen går inn for en bedre tilrettelegging for kliniske studier og bruk av helseregistre, slik Helsenæringsmeldingen foreslår. En samlet næringskomité mener videre at forventningene til innovasjon og samarbeid med forskning og næringsliv i oppdragsdokumenter til helseforetakene må følges opp med insentiver og finansieringssystemer.

– Vi applauderer at komiteen krever finansieringssystemer for dette. Vi ønsker å understreke hvor viktig det vil være å innføre en takst for kliniske studier som gjør at leger og andre helsearbeidere får tid og insentiver til å utvikle bedre behandling for pasienter – i samarbeid med industrien, sier Ketil Widerberg.

Oslo Cancer Cluster foreslo i sitt høringsinnspill til helsenæringsmeldingen å etablere et nasjonalt senter for kliniske studier, og at senteret knyttes til en felles database for helsedata hvor både myndigheter, forskning og industri kan få tilgang til løpende pasientdata fra behandling av den enkelte pasient.

Oslo Cancer Cluster foreslo også å etablere et nordisk senter for celleterapi. Det er vel innen rekkevidde, tatt i betraktning at Norge er ledende på immunterapi og spesielt celleterapi spesielt innen kreft – og at kreft er spydspissen i kliniske studier internasjonalt.

Begge disse forslagene fra Oslo Cancer Cluster har komiteen trukket frem i sin innstilling.

Norge har blitt det minst attraktive landet i Norden for kliniske studier. Oslo Cancer Cluster understreker at Norge må tørre å være først ute på to vesentlige områder for å snu denne utviklingen:

Norge må nå ta lederrollen i utviklingen av klinisk dokumentasjon og være et foregangsland i godkjenning av ny presisjonsmedisin.

Den muntlige høringen i Næringskomiteen kan sees i sin helhet på Stortingets nettsider.

Offentlig-privat samarbeid

– Oslo Cancer Cluster har alltid prioritert arbeidet for en sterkere kultur for samarbeid og dialog mellom helsetjenesten, akademia og næringsliv. Det er et kontinuerlig arbeid og vi ser med glede at komiteen stiller seg bak dette, sier Widerberg.

Komiteen peker på at Norge i løpet av de siste årene har bygd opp verdensledende helseklynger som nettopp Oslo Cancer Cluster og Norway Health Tech. Disse klyngene har utviklet økosystemer som bidrar til å etablere nye bedrifter og øke konkurransekraften.

Komiteen ber regjeringen “vurdere tiltak som kan sikre videreføring av klyngene som en møteplass mellom det offentlige og private og som bidragsytere til internasjonal vekst.”

For Oslo Cancer Cluster er det motiverende å se at dette blir poengtert.

Helsedata

– Helsedata er et tema som Oslo Cancer Cluster har engasjert seg i siden oppstarten for over ti år siden, men som vi ser nå blir stadig mer aktuelt grunnet sammensmeltingen av biologi og teknologi, sier Widerberg.

Komiteen peker på mange muligheter med helsedata, som er en viktig del av norsk helsenæring – ikke minst for å gi pasienter best behandling.

– Vi ser imidlertid behovet for en konkretisering av hvordan vi legger opp til bruk av helsedata i utvikling av legemidler. Vi trenger også en mer konkret plan for hvordan vi kan bruke helsedata for å forstå genetisk data for å bedre helsen vår, sier Widerberg.

Næringskomiteens innstilling om helsenæringsmeldingen behandles i Stortinget 26. november 2019.

 

Les mer

 

EHiN 2019 – highlights

Did you miss EHiN this year? Or simply want to catch up on the highlights relating to cancer research? Read our short summary below.

EHiN, short for e-health in Norway, is Norway’s national conference on e-health. It is a meeting place where decision-makers, the business community and the health sector gather to talk, share knowledge, learn from each other and collaborate.

This year, Oslo Cancer Cluster became a co-owner of EHiN (together with ICT Norway and Macsimum), because we believe new technologies and digital solutions are essential in the development of novel cancer treatments. This will only be possible if public and private organizations find new models of collaboration and EHiN is a great platform to create those future partnerships.

Read this interview to find out more about how new technologies can improve cancer research

 

A conversation on health data during day 1 of EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Capturing the value of health data

An engaging dialogue on the value of health data took place at the end of the first day.

Health data will revolutionize how we understand and how we treat diseases, such as cancer. Better diagnosis and monitoring will change how we design our healthcare systems. A central question is how we capture the value of this revolution. Some fear multinationals like Google and Facebook will exploit our unique health data for profit. Others fear that Norwegians will value and protect their health data too well, resulting in innovation happening elsewhere. Is there a golden mean between giving full access to health data and charging the highest price?

Ketil Widerberg, General Manager at Oslo Cancer Cluster, led the conversation with a panel of four. Joanne Hackett, Chief Commercial Officer at Genomics England, brought an international perspective and experiences of how they have collected 100 000 genomes from patients with rare diseases. Sigrid Bratlie, award-winning cancer researcher, shared her knowledge of new cancer treatments and the opportunities they present in conjunction with health data. Heidi Beate Bentzen, Doctoral Research Fellow at University of Oslo, represented some of the legal considerations when dealing with health data. Rajji Mehdwan, General Manager at Roche, contributed with the pharma industry perspective.

 

The crowded crowded expo area during EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Networking in the expo area

The expo area is the heart and soul of EHiN. This is where public and private organizations can meet under informal circumstances and create new partnerships. These collaborations are what lead to knowledge sharing and that digital solutions can be implemented in the health sector.

This year, a pharma company was present in the expo area for the very first time, our member Roche. Roche are investing more in genetic testing and personalized medicines than ever before. But why are genetic tests important for cancer treatments? Cancer is more than a disease, it is about the composition of DNA, RNA and proteins – and how these relate to one another. Every cancer tumor is therefore unique, but by finding out more about the genetic sequence, one can develop personalized treatments that target the tumor effectively.

In the expo area, a variety of start-ups, IT companies, health clusters, public organisations and academic institutions were also present. For two days, the area was buzzing with interactions, meetings and talks.

We hope you carry on the conversations and that we see all of you again next year!

 

Machine learning improves cancer research

This interview was first published on EHiN’s official website. Scroll down to read it in Norwegian.

 

EHiN is important in order to realise the opportunities that digital technologies can give patients, society and industry.

Ketil Widerberg is the General Manager of Oslo Cancer Cluster, which is a co-owner of EHiN 2019. We asked Ketil Widerberg a few questions about why digitalization and EHiN are important for cancer research.

–Can you describe in short what Oslo Cancer Cluster is and what you do?

Oslo Cancer Cluster is a non-profit member organization that gathers public and private players. The goal is to transform cancer research into treatments that change patients’ lives. We are a National Centre of Expertise (NCE).

–You are now co-owners of EHiN. What do you wish to achieve with that?

Oslo Cancer Cluster has the last ten years developed and established well-known meeting places (such as Cancer Crosslinks) by combining different disciplines. In the future, digitalisation and precision medicine (e-health) will be a central area in cancer research.

EHiN is a perfect match in this area. EHiN will be an important platform in order to realise the opportunities that digital technologies can give patients, society and industry.

–What do you think AI will mean for cancer research?

Today’s breakthroughs in treatment will often only work on 3 out of 10 patients. Artificial intelligence will change medicine in two ways. First, how we understand cancer. In the same way as the microscope gave us the ability to see things on a cellular level, data will now help us to see patterns we never would have discovered.

Second, how we treat cancer will change. We have to be ready to give the right treatment to the right patient at the right time. One way of giving individualised treatments is to recognize patterns – patterns that show how a patient will react from a treatment.

After that, you can see in larger groups of people if this pattern is repeated. Then, you select the patients that have a positive response to the treatment. This will, to begin with, not be a perfect method, but if you repeat this process, the modern machine learning systems can make it better and better.

–We know that health research takes time. How can digital solutions improve this?

Digitalisation will accelerate the development of new treatments in several areas. One area is clinical studies. Digital technology can help to adjust studies according to patient responses and enable digital control arms that shorten years off the developmental period. Digital solutions can make clinical trials more flexible and efficient, by reducing the administrative burden on companies and at the same time make it simpler for patients to enroll.

Gradually, as the volume and speed of the data increases, we have the opportunity to use new machine learning algorithms – such as deep learning. The algorithms can identify digital biomarkers that will give faster and better development of new treatments.

–Why is EHiN an important meeting place for Norway?

EHiN is relevant for Oslo Cancer Cluster because the IT revolution is about to hit the oncology field. Personalized treatments, genomics and the use of health data will soon develop into one of the most important areas of “e-health”. This is also an area that is of great interest for the IT industry, for data storing, data analysis, machine learning, pattern recognition, connecting different data sources, and so on.

At the same time, the technology will also impact the academic world and the pharmaceutical part of the health sector, and contribute to set the rules for the whole value chain in health processes in decades to come. EHiN wishes, in collaboration with Oslo Cancer Cluster, to build Norway as an important international hub in the area of e-health – by gathering and showcasing the different activities at the conference and in other settings.

 

–Selvlærende datasystemer gjør kreftforskning stadig bedre

EHiN er ifølge Ketil Widerberg viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet. Widerberg er daglig leder for Oslo Cancer Cluster, som i høst 2018 gikk inn som medeier av EHiN.

Vi stilte Ketil Widerberg noen spørsmål om hvorfor digitalisering og EHiN er viktig for kreftforskning.

–Kan du beskrive kort hva OCC er og hva dere gjør?

OCC er en non-profit medlemsorganisasjon som samler offentlige og private aktører. Målet er å gjøre kreftforskning til produkter som endrer pasienters liv. Vi er et NCE (National Centre of Expertise).

Dere har blitt med på EHiN. Hva ønsker OCC å oppnå med det?

Oslo Cancer Cluster har de siste 10 årene utviklet og etablert anerkjente møteplasser (som Cancer Crosslinks) ved å kombinere forskjellige fag-grener. Fremover vil digitalisering sammen med presisjonsmedisin (e-Helse) være et sentralt område innenfor kreft.

EHiN er en perfekt match for dette området. I tråd med OCC sin strategi vil EHiN være viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet.

–Hva tror du AI kan bety for forskning rundt kreft?

Dagens behandlingsgjennombrudd vil ofte bare virke på 3 av 10 pasienter. Kunstig intelligens vil endre medisin på to måter. Hvordan vi forstår kreft. På samme måte som mikroskopet ga oss evnen til å se helt ned på cellenivå, vil data nå hjelpe oss til å se mønster vi aldri ellers ville oppdaget.

Hvordan vi behandler kreft vil forandre seg. Vi må derfor klare å gi den rette behandlingen til den rette pasienten til rett tid. En måte å kunne gi individbasert behandling er å gjenkjenne mønster. Mønster som viser hvordan en pasient vil reagere på en behandling.

Deretter se i større grupper mennesker om dette mønsteret gjentar seg. Da kan man plukke ut de pasientene med positivt utbytte av behandlingen. Dette vil i begynnelsen ikke være en perfekt metode, men hvis man gjentar denne prosessen, kan moderne selvlærende datasystemer gjøre den stadig bedre.

–Vi vet at helseforskning tar lang tid. Hvordan kan digitale løsninger bidra på dette?

Digitalisering vil akselerere utviklingen av ny behandling på flere områder. Ett område er kliniske studier. Digital teknologi kan gjøre at studier justeres etter respons og muliggjøre digitale kontrollarmer som korter år av utviklingstiden. Kliniske forsøk kan bli fleksible og effektive ved å redusere administrative byrder på firmaer, og samtidig gjøre det enklere for pasientene.

Etter hvert som volumet og hastigheten på data øker, har vi mulighet til å bruke nye maskinlæringsalgoritmer – som dyplæring. Det kan identifisere digitale biomarkører som vil kunne gi raskere og bedre utvikling av ny pasientbehandling.

–Hvorfor er EHiN en viktig møteplass for Norge?

EHiN er faglig relevant for OCC fordi IT-revolusjonen er i ferd med å slå inn på onkologi feltet. Persontilpasset medisin/behandling, genetikk og bruk av helsedata vil snart utvikle seg til et av de viktigste områdene innen “e-helse”. Dette er også et område som er av stor interesse for IT-bransjen (datalagring, analyse, machine learning, mønstergjenkjenning, kobling av ulike datakilder osv.).

Samtidig vil teknologien også få konsekvenser for den akademiske verden, samt den farmasøytiske delen av helsesektoren, og bidra med å legge rammene for hele verdikjeden i helseprosessene i tiårene fremover. EHiN ønsker, i samarbeid med OCC, å bygge Norge som en viktig internasjonal hub på området e-Helse ved å samle og vise frem ulike aktiviteter på konferansen og også i andre sammenhenger.

 

Meet the mentors

Read the questions and answers from when the students at Ullern Upper Secondary School met their mentors for the very first time.

In the middle of October, 32 students at the researcher program at Ullern Upper Secondary School got to meet their four mentors for the next year. After a short introduction, there were many questions from the students to the mentors. It took an hour and a half before their curiosity settled down and it was time for pizza.

Simone Mester: “I am a former student of Ullern Upper Secondary School and now I am doing a PhD in molecular biology. In the long term, I could imagine working in the private sector developing pharmaceuticals.”

Øyvind Kongstun Arnesen: “I am a doctor and worked many years in Lofoten. After that, I worked some years as a surgeon in an emergency room, before I began working for a large German pharmaceutical company called Boehringer Ingelheim. Eight years ago, I became CEO for Ultimovacs. Ultimovacs are trying to develop the worlds first cancer vaccine.”

Jónas Einarsson: “I am a doctor, and did the first part of my medical degree on Iceland, because my grades weren’t the best. Then, I worked many years as a general practitioner in Lardal, before moving to Oslo and becoming the manager of the first private hospital in Norway. In parallel with this, I did a degree in economy and management at BI. Finally, I became the CEO of Radforsk, who among other things, initiated the Oslo Cancer Cluster Innovation Park and this school collaboration.”

Bjørn Klem: Bjørn is the fourth mentor, but he was unfortunately ill during the first meeting. Janne Nestvold, Laboratory Manager at Oslo Cancer Cluster Incubator, came in his place. Nestvold has a PhD and has worked as a researcher for many years.

 

After the introductions, the teachers at the researcher program, Ragni Fet and Monica Flydal Jenstad held a short presentation of the upcoming work with the mentors.

Then, there were several questions from the audience.  We were really impressed by the amount and quality of the questions, that concerned both education, job opportunities and, research and development, which both Kongstun and Mester are a part of. The questions rained down and the answers came in a session that continued for over an hour and a half. You can read some of them below. Then it was time for some pizza and mingle.

The next time the students and the mentors will meet will be in the beginning of December. The students will meet in the mentors’ workplaces and see with their own eyes what they do on an everyday basis.

 

Questions and answers:

What kind of medical specialisation does Jónas and Øyvind have?

“We are both general practitioners and have not specialised. You do not have to.”

 

What kinds of jobs can you do after you are finished, Simone?

Simone: “I can do a postdoc to become a researcher in academia. I am still a student while I am doing my PhD, but I receive a salary. It is normal to do two postdocs, then you can become group leader or professor. I don’t think I will follow that route, I would much rather work in a private company or start something myself. I think that seems more exciting.”

Jónas: “Simone will get a job immediately in one of our companies if she wants it.”

 

Are there many developments every day to find a cancer vaccine?

Jónas: “It takes time, so the short answer is no.”

 

What is the greatest challenge with the cancer vaccine that Ultimovacs are developing?

Øyvind: “To make it work? A good and difficult question.”

Øyvind explained further about the development and testing of the vaccine at Ultimovacs.

 

What is your PhD about, Simone?

Simone: “I develop technology that prolongs the half-life of medicines. It is a patient-focused PhD, since it is a big inconvenience for the patient to take medicines often, but I hope we can succeed in prolonging the half-life so that patients can take the medicine once a week or once a month.”

 

What should one study if one wants to work with medical development or pharmaceutical development?

Jónas: “Molecular biology, physiology, IT, physics, chemistry, biology, statistics  – there are many opportunities.”

Øyvind: “In our company, we have physiologists, doctors, protein chemists, dentists and pharmacists working right now.”

 

When you went to upper secondary school, did you know that you would be doing what you do today?

Jónas: “I chose the natural science, but did not know anything else.”

Øyvind: “I only knew I wanted to study natural science.”

Simone: “I was thinking about studying a medical degree, but I am happy that I chose molecular biology.”

Janne: “I thought about becoming a researcher and thought it seemed exciting. You should absolutely think widely and not just the easiest solution when you are still in upper secondary school. You will benefit from that when you begin to study at university.”

 

Have you always been interested in biology, or was there something special you saw that made you excited about it? 

Jónas: “Yes, always.”

Øyvind: “Biology in itself is very fascinating. There is so much we do not know, like where memories are stored in the brain, for example. We know very little about how the body works, so that is very fascinating.”

 

The cancer vaccine you are developing, will it work against all cancers or only specific types of cancer?

Øyvind: “It will work to treat and protect against most cancer types.”

 

What did Bjørn do in PhotoCure, the company he worked for before becoming manager for Oslo Cancer Cluster Incubator?

Jónas: “He was Head of Research. He is a very smart guy, and he has also worked a lot with the regulatory side.”

 

ThermoFisher Scientific Norway lectures students at Ullern

A peak into the cancer research world

Ullern Upper Secondary School is unique, because it shares its building with world-class cancer researchers. Last month, all new Ullern students got to experience this first-hand.

This year’s School Collaboration Days in Oslo Cancer Cluster Innovation Park were held right before the autumn holiday. All the first-year classes at Ullern Upper Secondary School were given a guided tour around the Innovation Park to get to know the companies that they share their everyday lives with.

The purpose of the School Collaboration Days is to give the first-year students at Ullern Upper Secondary School an understanding of what the different companies in the Innovation Park and departments of Oslo University Hospital do.

The common denominator for all of them is cancer and many are developing new cancer treatments. While the Cancer Registry of Norway are collecting statistics and doing cancer research, Sykehusapotekene (Southern and Eastern Norway Pharmaceutical Trust) produce chemotherapy and antibodies for patients that are admitted to The Norwegian Radium Hospital and the Department of Pathology (Oslo University Hospital) gives the cancer patients their diagnoses.

 

IN PICTURES

The student guided tours of Oslo Cancer Cluster Innovation Park

Jonas Einarsson lecturing to students at Ullern

True to tradition, Jónas Einarsson, CEO of the evergreen fund Radforsk, opened the School Collaboration Days in Kaare Norum auditorium with a common lecture. In this image, Einarsson is talking about the development of the Montebello area, which Oslo Cancer Cluster Innovation Park is a part of. The first Radium Hospital was opened in 1932 and the following year Ullern School was moved from Bestum to the same place that houses Oslo Cancer Cluster Innovation Park today.

 

Kreftregisteret lecturing to students at Ullern.

Elisabeth Jakobsen, Head of Communications of the Cancer Registry of Norway, tells the first year students about what they do and the risk factors for developing cancer. Also, she asked the students several questions about how to regulate the sales of tobacco, e-cigarettes and many other things.

 

Thor Audun Saga is the CEO of Syklotronsenteret (“the Norwegian medical cyclotron centre”). He told the students about what they do, what a cyclotron is and how they use cyclotrons to develop cancer diagnostics.

 

ThermoFisher Scientific Norway lectures students at Ullern

The management of Thermo Fisher Scientific Norway are also housed in the Oslo Cancer Cluster Innovation Park. They told the students about the Norwegian invention called “Ugelstadkulene”. This is both the starting point for million of diagnostic tests across the world and revolutionary (CAR T) cancer treatments, 45 years after they were invented.

 

Students guided through the Oslo Cancer Cluster Incubator Laboratory

The tour was ended with a walk through the laboratory of the Oslo Cancer Cluster Incubator. The students were given an inside look at the work done and instruments used by the cancer researchers in the lab. This area is only one or two floors above their regular class rooms. The student could see first-hand the opportunities there are in pursuing a career in research, entrepreneurship and innovation.

Mer til e-helse og sykehus

I Statsbudsjettet 2020 foreslår regjeringen flere temaer som er relevante for Oslo Cancer Cluster, blant annet å øke investeringer i e-helseløsninger, satse mer på sykehusene og utvide opsjonsskatteordningen for små oppstartsselskap. Men det står lite konkret om kreft.

– Helse og omsorg har stor plass i budsjettet også til neste år, sa finansminister Siv Jensen i finanstalen hun leverte fra Stortingets talerstol 7. oktober 2019.

Jensen ramset deretter opp satsingsområdene som regjeringen har på helse i Statsbudsjettet 2020:

  • mer moderne sykehus med ny teknologi og nye behandlingsformer, flere fastleger og legespesialister
  • oppfylle opptrappingsplanen for rusfeltet 
  • kortere ventetid for pasienter ved sykehusene
  • bedre omsorgstjenester

Du kan lese hele finanstalen på regjeringens nettside.

Lite konkret om kreft

Statsbudsjettet 2020 nevner lite konkret om kreft, faktisk bare to punkter.

  1. Regjeringen foreslår å øke bevilgningene til nasjonalt screeningprogram for tarmkreft med 24,7 millioner kroner i 2020. Det blir en samlet bevilgning på om lag 97 millioner kroner.
  2. Radiumhospitalet skal videreutvikles som et spesialisert kreftsykehus. Dette nevnes i omtalen av den planlagte sykehusomleggingen i Oslo.

Kliniske studier nevnes ikke spesifikt i Statsbudsjettet 2020.

100 millioner til Gaustad og Aker

Regjeringen foreslår at 100 millioner kroner går til nye sykehus på Aker og Gaustad i Oslo. Samtidig foreslås en låneramme på 29,1 milliarder kroner til prosjektet. Det skal legge til rette for at Helse Sør-Øst og Oslo universitetssykehus kan gå i gang med prosjektering og bygging av et nytt, stort akuttsykehus på Aker og et samlet og komplett regionsykehus inkludert lokalsykehusfunksjoner på Gaustad.

I tillegg foreslås en lånebevilgning til universitetsarealer ved det nye sykehuset i Stavanger.

Satsing på e-helse

Regjeringen foreslår et løft for den nasjonale e-helseutviklingen, med 373 millioner kroner. Dette skal få opp tempoet på digitaliseringen i helsetjenesten og legge til rette for å utnytte norske helsedata bedre.

– Norge har omfattende og verdifulle helsedata som er bygget opp over lang tid. Regjeringen ønsker å gjøre disse lettere tilgjengelig for forskere og andre som har behov for å analysere helsedata. Helseanalyseplattformen vil kutte ned på unødvendig byråkrati og tidstyver. Regjeringen foreslår å øke bevilgningen med 131 millioner kroner, sier helseminister Bent Høie i en pressemelding om temaet.

Regjeringen vil også etablere et «standardisert språk», et kodeverk og terminologi i helse- og omsorgssektoren, for å bedre pasientsikkerhet og skape mer samhandling.

Til sist vil regjeringen øke bevilgningene til modernisering av Folkeregisteret i helse- og omsorgssektoren og til forvaltning og drift av de nasjonale e-helseløsningene kjernejournal, e-resept, helsenorge.no, grunndata og helseID.

Pressemeldingen om satsingen på e-helse kan du lese på regjeringens nettside.

Les mer om prioriteringer i budsjettforslaget for Helse og omsorgsdepartemente på side 25 i Statsbudsjettet 2020. 

Dobbelt opsjonsfordel for start-ups

Regjeringen vil utvide ordningen for gunstig skattemessig behandling av opsjoner i små oppstartsselskaper. Maksimal opsjonsfordel per ansatt dobles fra 500 000 kroner til en million kroner. Regjeringen foreslår også å utvide ordningen til å omfatte flere selskap.

I tillegg til at opsjonsfordelen dobles, økes maksimalt antall ansatte i selskap som kan være i ordningen fra 10 til 12. Det gjør at flere små selskap kan benytte ordningen.

Opsjonsskatteordningen for små oppstartsselskap ble innført fra 2018. Under denne ordningen kan ansatte få opsjoner som gir rett til å kjøpe aksjer i selskapet til en fastsatt pris. Ordningen innebærer blant annet at skatteplikten på opsjonene utsettes salg av aksjene kjøpt ved hjelp av opsjonene. Denne skatteutsettelsen er begrenset til en maksimal opsjonsfordel, som nå foreslås doblet.

Utvidelsene må godkjennes av ESA før de kan tre i kraft. Regjeringen opplyser at den jobber for at endringene vil bli godkjent før nyttår, slik at de kan gjelde fra 1. januar 2020.

Flere relevante temaer i Statsbudsjettet

  • Skattefunn: Regjeringen foreslår endringer i Skattefunn-ordningen som skal stimulere næringslivet til å investere enda mer i forskning og utvikling (FoU). Forslagene øker den årlige Skattefunn-støtten med 150 millioner kroner fra 2020. Samtidig foreslår regjeringen flere tiltak som gir bedre kontroll med ordningen. Les mer om skattefunnforslaget på regjeringens nettside.  
  • Protonsenter: 26 millioner foreslås til protonsenter i 2020.
  • Fastlegene: Regjeringen foreslår å bruke om lag 350 millioner kroner til å styrke og videreutvikle fastlegeordningen. De varsler flere tiltak for å styrke ordningen i en handlingsplan som skal komme våren 2020.
  • Legespesialisering: Regjeringen foreslår 10 millioner kroner til allmennleger i spesialisering (ALIS)-kontor i Bodø, Trondheim, Bergen, Kristiansand og Hamar. Tilskuddet gis for å bistå kommuner i regionen til å planlegge, etablere, inngå og følge opp ALIS-avtaler.
  • Statsbudsjettet 2020 er på 1 414,6 milliarder kroner. Staten forventer å tjene 245 milliarder kroner på olje– og gassvirksomheten til neste år.
  • Du kan fordype deg i Statsbudsjettet 2020 på regjeringens temaside.

Educating the cancer researchers of tomorrow

Ullern Upper Secondary School and Oslo Cancer Cluster are paving the way for students to become the researchers of the future.

A new program has been launched this autumn for Ullern students who wish to learn how researchers work. It will qualify students for university studies and specialise them in biomedical research, technology and innovation. It is the only researcher program for upper secondary school in Norway.

“The researcher program at Ullern will be a place where students are encouraged and guided to become independent students, with a need to explore, an understanding of methods and a desire to learn,” said Ragni Fet, teacher at Ullern Upper Secondary School. “They will learn to gather good and reliable information, they will do research in practice through varied experiments, and they will gain real insight into job opportunities in the research industry.”

The program is a joint initiative between Oslo Cancer Cluster and Ullern Upper Secondary School, who have been collaborating since 2009. This has offered students in the natural sciences, health, media and electricity special opportunities to learn science subjects outside a traditional classroom setting.

“The purpose of launching a researcher program at Ullern Upper Secondary School is to recruit the researchers, scientists and entrepreneurs of the future,” said Bente Prestegård, Project Manager at Oslo Cancer Cluster. “We know that these jobs are needed, and we want to teach students about what it means to be a researcher or entrepreneur. With better insight into the professions, the students will be able to make a safe career choice.”

 

With a passion for science

About 30 students have already begun this unique program at Ullern Upper Secondary School. One of them is Henrikke Thrane-Steen Røkke.

“I chose the researcher program because I personally enjoy studying the natural sciences and innovation, and I wanted more of those subjects. I had entrepreneurship as an elective at secondary school and thought it was a lot of fun. I think it seemed very exciting and wanted to learn more,” Henrikke explained. “I hope I can gain insight into what it is like to work as a researcher. I hope we can see and experience a lot of it in practice and to work in depth with some subjects in certain areas.”

The program is especially well suited for students with an interest in the natural sciences, such as Peder Nerland Hellesylt, who also recently begun the program.

“I applied to this program because I have always had an interest for the natural sciences and mathematics,” Peder said. ”I think this program is very interesting because we aren’t just sitting and writing, but get practical tasks too, for example experiments.”

 

Mixing theory with practice

Ullern Upper Secondary School is located right next to The Norwegian Radium Hospital, The Institute for Cancer Research, The Norwegian Cancer Registry and the Oslo Cancer Cluster Incubator, with its over 30 big and small companies. The students are therefore never far from world class researchers. This offers the unique opportunity to take advantage of the co-localisation and use mentors from the research milieu in the teaching.

“Through the collaboration with Oslo Cancer Cluster, we will obtain external lecturers to the class rooms; bring the students to multiple, exciting innovation companies and laboratories; and the students will attempt real research experiments themselves. We are raising the level and are ambitious for the sake of the students,” Ragni Fet said.

 

Sign up to OCC newsletter

Forward-looking session on cancer precision medicine

Emerging therapies, digital solutions and AI were central topics when international experts met during the oncology session at the Nordic Life Science Days 2019.

Oslo Cancer Cluster hosted the session on oncology titled “Cancer precision medicine: State-of-the-art and future directions” at the Nordic Life Science Days this year. The session covered recent advances in cancer immunotherapy and cell- and gene therapies. International experts met to discuss how big data, artificial intelligence and digital solutions are changing drug development, diagnostics and patient care.

 

AI revolutionizing cancer research

Dr. Mark Swindells on artificial intelligence and drug discovery.

Mark Swindells on artificial intelligence and drug discovery.

Mark Swindells, PhD, COO Exscientia, presented how artificial intelligence is changing and driving drug discovery now.

“On average 2 500 compounds need to be synthesized and tested to develop a candidate molecule for clinical trials. We want to apply AI to this artisan area of drug discovery. By reducing the amount of compounds synthesized and tested, we will reduce the overall cost and time to get drugs to market,” Swindells said.

This is a fast moving area and one of the examples of technical innovation Swindells gave was Exscientia’s Active Learning algorithms, which have been benchmarked to work as well as – and in some cases better than – the most successful humans.

In the area of precision oncology, Swindells said: “We are particularly interested in the acquisition of resistance in oncology as an area where our technology could be applied.”

 

Kaisa Helminen, CEO Aiforia, focussed on how the use of artificial intelligence can make image analysis more accurate and efficient.

Dr. Kaisa Helminen on artificial intelligence and image analysis.

Kaisa Helminen on artificial intelligence and image analysis.

“Due to the ageing population, more samples need to be analysed and many countries suffer from serious shortage of pathologists. Many patients are left waiting for their diagnosis and treatment. Manual, visual image analysis is slow and highly subjective. There is a risk for misdiagnosis, which can be dramatic for the patient and costly for the healthcare system.”

Aiforia has built an AI platform that supports medical experts in diagnostics.

“For the first time we are bringing AI tools for doctors’ use, so they can easily create their own AI algorithms,” Helminen explained. “Instead of visually estimating something from samples, we bring accurate, numerical information. AI algorithms are consistent from day to day, week to week, removing the human error component,”

We are bringing AI tools for doctors’ use.

 

Marko Kuisma, Chief Commercial Officer at Kaiku Health, then presented a new digital platform for better patient monitoring, using machine learning tools.

Marko Kuisma on digital tools for better patient monitoring.

Scientific evidence demonstrates that patients who use a digital symptom monitoring solution have an overall survival benefit, experience improved quality of life and go through less visits to the emergency room and hospitalisations.

“The traditional interventions that clinicians make are reactive and come with a delay,” Kuisma explained. “With digital symptom monitoring, interventions are still reactive, but more timely, because you can detect the symptoms early on. When applying machine learning, we make that monitoring proactive and predictive, taking action before symptoms and adverse effects develop.”

“… taking action before symptoms and adverse effects develop.”

 

Identifying gene mutations

Jørn Skibsted Jakobsen Md. Ph.D.,Vice president Science and Medicine TA Urology/Uro-Oncology, Global Clinical Research and Development, Ferring Pharmaceuticals, introduced emerging gene therapies to treat non muscle invasive bladder cancer (NMIBC) bladder cancer.

Jørn Skibsted Jakobsen on a radical new gene therapy.

Jørn Skibsted Jakobsen on a radical new gene therapy.

If a NMIBIC patient doesn’t respond to BCG (a type of immunotherapy drug), a cystectomy is still considered the gold standard treatment. This involves surgically removing all or parts of the urinary bladder, creation of a urinary diversion using a piece of the small intestine and leads to a significantly decreased quality of life for the patient.

Jakobsen introduced a new gene therapy to treat NMIBC patients that are unresponsive to BCG treatment.

“Early research suggests mutations in the surrounding tissue of the tumour potentially predict the subsequent recurrence of the disease,” Jakobsen said. “What if we were able to identify those mutations? And then create a personalised gene-based antibody directed at identified mutations. You could potentially treat patients before the recurring disease.”

“You could potentially treat patients before the recurring disease …”

 

Novel targets and pathways

Carl Borrebaeck, Professor, Lund University, and Kristian Pietras, Professor of Molecular Medicine, Lund University presented L2CancerBridge, a collaboration between the Swiss Centre of Lausanne and Lund University. They are exploring a new model for translational research in breast cancer and tumour immunology.

Carl Borrebaeck introduced L2CancerBridge.

Carl Borrebaeck introduced L2CancerBridge.

The tumor immunology team in Lausanne is focused on identifying novel targets on immunoregulatory cells as T cells and dendritic cells, with the goal of identifying new targets for CAR-T cells. The breast cancer team is focused on studies of tumour cells and their microenvironment with the goal to identify signalling pathways.

“We have been able to find signalling pathways between malignant cells and connective tissue,” Pietras said.

These pathways are crucial for basal-like breast cancer, the most aggressive breast cancer subtype, and block the development of resistance to endocrine therapy. Blocking them allows the use of effective endocrine therapies in cancers that previously did not have any targeted treatment options.

 

Gaspar Taroncher-Oldenburg, PhD; Editor-at-Large, Nature Publishing Group, moderated the session for the second year in a row.

“I have been impressed by how much thought both co-hosts of the event—Jutta Heix from the Oslo Cancer Cluster and Carl Borrebaeck from Lund University—put into weaving together a compelling story that is timely and relevant, both locally and globally.” Taroncher-Oldenburg said.

“Of course, much of the credit for the session being successful goes to the panelists, who again this year captured the audience’s attention through a combination of intriguing presentations and a dynamic roundtable discussion that broadly illustrated different aspects–present and future—of precision medicine in oncology.”

“A compelling story that is timely and relevant, both locally and globally.”

Norway for life science

The biggest key players from the life science industry in Norway came together in Malmö with a common goal: to promote Norwegian life science and build Nordic collaboration.

The life science industry in Norway is booming and collaboration across Nordic borders is of increasing importance. That is why Oslo Cancer Cluster arranged the stand “Norway for Life Science” this year at the Nordic Life Science Days in Malmö.

Among the participants of the stand were governmental institutions, cluster organisations, private companies and academic institutions.

 

Promoting collaboration

On Wednesday, a delegation from the Norwegian Embassy in Sweden attended for an informal meet and greet with the Norwegian life science milieu. This was an excellent opportunity to share knowledge about Nordic cooperation and to strengthen joint activities within the life sciences.

See the video with Kirsten Hammelbo, Minister / Deputy Head of Mission, Norwegian Embassy below.

 

Standing together

The participants of the stand were altogether positive about the initiative and agreed it was a constructive platform to build new relationships. We asked some of the participants the same question: Why is it important for you to be here at NLS days?

“Our main focus here at NLS Days is Nordic collaboration, both public and private, to promote the life science industry.”
Catherine Capdeville, Senior Adviser, Innovation Norway

“It is important to follow what is happening in the industry and in other innovation environments. We are here to nurture our existing contacts and find new partners.”
Morten Egeberg, Administrative leader, UiO Life Science

“Firstly, it is important to show that Norway stands together. This is a significant meeting place. We consider the Nordic countries to be our home market, so we try to present what we do here. It is important for one actor to take responsibility, like Oslo Cancer Cluster does, so that we can collectively gather here.”
Anita Moe Larsen, Head of Communication, Norway Health Tech

“In the long term, we have research projects where we are looking for contacts in the life science industry – both partners of collaboration and potential clients. We are here to promote the centre and let everyone know that we exist.”
Alexandra Patriksson, Senior Adviser, Centre for Digital Life

“We are here to strengthen our collaboration with the best research environments in neuroscience. We want to show that the health industry in Norway is growing and what we can do when we stand together.”
Bjarte Reve, CEO, Nansen Neuroscience Network

“We are happy to contribute to make Norwegian life sciences visible and to show what Norway can offer as a host country, and attract potential investors and collaborating partners in research and innovation. And especially to make visible and be a part of the Norwegian community in this field. It is unusual in Norway that so many different players, both public and private, stand together in one stand – with one common goal.”
Espen Snipstad, Communications Manager, LMI

 

Full list of partners:

 

Debate from Arendalsuka

Together for precision medicine

During Arendalsuka 2019, we arranged a breakfast meeting on the development of cancer treatments of the future, together with LMI and Kreftforeningen.

Arendalsuka has become an important arena for those who want to improve aspects of Norwegian society. We were there this year to meet key players to accelerate the development of cancer treatments.

Our main event of the week was a collaboration with Legemiddelindustrien (LMI) and The Norwegian Cancer Society (Kreftforeningen). We wanted to highlight the cancer treatments of the future and whether Norway is equipped to keep up with the rapid developments in precision medicine. (Read a summary of the event in Norwegian on LMI’s website)

First speaker, Line Walen (LMI), presented the problems with the traditional system for approving new treatments in face of precision medicine.

The second presenter, Kjetil Taskén (Oslo University Hospital), introduced their new plan at Oslo University Hospital to implement precision medicine.

Then, Steinar Aamdal (University of Oslo) talked about what we can learn from Denmark when implementing precision medicine.

Lastly, Ole Aleksander Opdalshei (Norwegian Cancer Society) highlighted a new proposal for legislation from the government.

The exciting program was followed by a lively discussion between both politicians and cancer experts.

There was general agreement in the panel that developments are not happening fast enough and that the Norwegian health infrastructure and system for approving new treatments is not prepared to handle precision medicine, even though cancer patients need it immediately.

The panelists proposed some possible solutions:

  • Better collaboration and public-private partnerships between the health industry and the public health sector.
  • More resources to improve the infrastructure for clinical trials, with both staff, equipment and financial incentives.
  • Better use of the Norwegian health data registries.

After the debate, we interviewed a few of the participants and attendees. We asked: which concrete measures are needed for Norway to get going with precision medicine?

Watch the six-minute video below (in Norwegian) to find out what they said. (Turn up the sound)

 

Did you miss the meeting? View the whole video below on YouTube (in Norwegian).

 

Full list of participants:

  • Wenche Gerhardsen, Head of Communications, Oslo Cancer Cluster (Moderator)
  • Line Walen, Senior Adviser, LMI
  • Kjetil Taskén, director Institute for Cancer Research, Oslo University Hospital
  • Steinar Aamdal, professor emeritus, University of Oslo
  • Ole Aleksander Opdalshei, assisting general secretary, The Norwegian Cancer Society
  • Marianne Synnes (H), politician
  • Geir Jørgen Bekkevold (KrF), politician
  • Tuva Moflag (Ap), politician
  • Per Morten Sandset, vice principal for Innovation, University of Oslo
  • Audun Hågå, Director Norwegian Medicines Agency

 

Thank you to all participants and attendees!

The next event in this meeting series will take place in Oslo in the beginning of next year. More information will be posted closer to the event.

We hope to see you again!

 

Organisers:

 

 

 

 

 

Sponsors:

 

 

 

 

 

Meet our new members

Oslo Cancer Cluster proudly presents the new members that have joined our organisation during the second quarter of 2019.

The new members represent a valuable addition to our non-profit member organisation, which encompasses the whole oncology value chain. By being a part of Oslo Cancer Cluster, our members are connected to a global network with many relevant key players in the cancer research field. Our members contribute to this unique ecosystem and ensure the development of innovative cancer treatments to improve patients’ lives.

 

theradex logo

 

Theradex Oncology

Theradex Oncology provides global clinical development services exclusively to companies developing new cancer treatments. The company has a strong emphasis on early drug development. It provides regulatory and medical support for companies taking cancer treatments into clinical development in the US and Europe.

Theradex Oncology staff has participated in educational events at Oslo Cancer Cluster for a number of years. This is how they became familiar with the cluster.

“Oslo Cancer Cluster provides a unique opportunity to share knowledge with other professionals dedicated to developing new cancer treatments.” Meg Valnoski, President Theradex Oncology

Meg Valnoski explains how the company has been supporting the development of cancer treatments for over 30 years and experienced the advancements in cancer treatments over that time.

 “We are always working to expand our knowledge and experience in cancer drug development to support our partnerships with companies developing new therapies for cancer treatment.”

Catapult Life Science

Catapult Life Science is a centre established to bridge the gap between the lab and the industry, providing infrastructure, equipment and expertise for product development and industrialisation in Norway. It has been formed as a result of joint efforts from a range of different players with a common goal of enabling more industrialisation of life science research in Norway, truly what the Norwegians call a dugnad.

“We see Oslo Cancer Cluster as a key partner for realising our purpose, which is to create new opportunities for product development and industrialisation in Norway.” Astrid Hilde Myrset, CEO Catapult Life Science

Myrset adds:

“Our vision is ‘Bringing science to life’, which implies enabling new ideas to a be developed in Norway for new employment in the pharma industry, new growth in the Norwegian economy, and last but not least, new products to the market, enabling a longer and healthier life for patients.”

 

This post is part of a series of articles, which will introduce the new members of our organisation every three months.

  • To find out who else is involved in Oslo Cancer Cluster, view the full list of members
  • Follow us on Facebook or subscribe to our newsletter to always stay up to date!

 

New board members

We are happy to welcome three new members to the board of Oslo Cancer Cluster. Find out what they had to say about entering their new positions.

Per Morten Sandset

Per Morten Sandset is a Senior Consultant in hematology at the Oslo University Hospital and a professor in thrombosis research at the University of Oslo. He has previously been head of the Department of Hematology and Deputy Director of the Medical Division at Ullevål University Hospital and Director of Research, Innovation and Education of the southeastern Norway Health Region. He is currently Vice-Rector at the University of Oslo with responsibilities for research and innovation including the life sciences activities of the university. Sandset has published more than 315 original publications and supervised 30 PhD students.

Why did you join the board of Oslo Cancer Cluster?

“There are currently strong political expectations that the many scientific achievements in the life sciences can be utilized, commercialized and eventually form the basis for new industry.”

“Oslo Cancer Cluster has matured to become a major player of the research  and innovation ecosystem within the life science area in Oslo and also on a national level. This is why being on the board is so interesting and important.”

What do you hope to achieve in your new role?

“As a OCC board member, I want to strengthen and develop the collaboration across the sectors, i.e., between the hospitals and the university – and between academia and industry. On a larger scale, it is about establishing a regional ecosystem that take achievements of the basic sciences into the development of enterprises. Oslo Cancer Cluster should maintain its role as the major player in the cancer area.”

Gunhild M. Mælandsmo

Gunhild Mari Mælandsmo

Gunhild M. Mælandsmo is the head of Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital where she also is heading the “Metastasis Biology and Experimental Therapeutics” research group. She is a Professor at Faculty of Health Sciences, University of Tromsø.

Why did you join the board of Oslo Cancer Cluster?

“I think the concept of Oslo Cancer Cluster is very interesting, fostering a close collaboration between academia, health care providers and the health industry. 

“Focusing on translational research for many years, I think I can contribute in the board with valuable experience in several parts of the value chain; from basic science, from translational aspects and from my close collaboration with clinical partners as well as administrative experience.”

What do you hope to achieve in your new role?

“I hope I can contribute with valuable knowledge – both from cancer research and from my administrative experience from Oslo University Hospital. I also hope to see more products from small Norwegian companies reaching clinical testing and expanding the biotech industry. Finally, I hope to see the Norwegian health care system more active in providing precision cancer medicine (and to utilise the advantages we have when it comes to registries etc).”

Cathrine M. Lofthus

Cathrine M. Lofthus is the CEO at the Norwegian South East Regional Health Authority (Helse Sør-Øst RHF). She has previously held several leading positions at Aker University Hospital and at Oslo University Hospital. Lofthus is a qualified doctor from the University of Oslo, where she also completed a PhD in endocrinology. She also holds qualifications in economy, administration and leadership, and has experience from the health sector as a clinician, researcher and leader. Lofthus also holds directorships in Norsk helsenett and KLP, in addition to being a member of the board of National e-Health.

 

We also wish to extend a special thank you to our previous board members:

  • Kirsten Haugland, Head of the Research and Prevention Department at the Norwegian Cancer Society.
  • Inger Sandlie, professor at the Department of Biosciences, University of Oslo and research group leader at the Department of Immunology, Oslo University Hospital.
  • Øyvind Bruland, professor of clinical oncology at the University of Oslo and consultant oncologist at The Norwegian Radium Hospital, Oslo University Hospital.
Tor takes a mouthswab before in order to profile his DNA.

DNA profiling on the syllabus

Students learned about a Norwegian invention behind CAR T-cell therapy and DNA profiling on their latest work placement.

This article is also available in Norwegian here.

Thermo Fisher Scientific is a global company that develops the Norwegian technology, which is based on “Ugelstad-kulene” (The Ugelstad Beads). In June 2019, Einar, Tor, Olav and Philip from Ullern Upper Secondary School completed a work placement with Thermo Fisher Scientific in Oslo. They used the beads to profile their own DNA and learned how the beads can be used to find murderers, diagnose heart attacks and save children from cancer.

“What do you plan to study when you finish upper secondary school?” Marie asks.

“The natural sciences,” Einar and Tor replies.

“The natural sciences at NTNU,” Olav says.

“First, the natural sciences and then, join the Air Force,” Philip answers.

Marie Bosnes is supervising the students who are attending the work placement and has worked more than 24 years in the Norwegian section of Thermo Fisher Scientific. She conducts research and development in the former monastery located on Montebello, next to Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School.

Today, Marie and several of her co-workers have taken time out of their busy schedules to tutor the four students from Ullern: Einar Johannes Rye, Tor Haugen, Olav Bekken and Philip Horn Børge-Ask. The students have nearly finished their second year and have so far focused their studies on mathematics, physics, chemistry and biology. But next year, they will also study programming, instead of biology.

“It is a good mix of subjects, especially programming is useful to learn. You should consider studying bioinformatics, because, in the future, it will be a very desirable qualification,” Marie says.

Marie has studied biology and her co-workers call her Reodor Felgen (a character from a famous Norwegian children’s comic book), since she loves to constantly explore research on new topics.

Treating cancer

An ullern student is looking at the dynabeads in a test tube.

Philip Horn Børge-Ask looks at the test tubes that contain the famous “Ugelstad-kulene”. Photo: Elisabeth Kirkeng Andersen

While Einar, Tor, Olav and Philip are on a work placement with Marie, four other Ullern students are on another work placement with Thermo Fisher Scientific in Lillestrøm. This is where they develop and produce Dynabeads for the global market.

“Dynabeads are also kalled ‘Ugelstad-kulene’, because they are a Norwegian invention. During the ‘1970s, one of NASA’s goals was to make perfectly round and identical, tiny, plastic microbeads in outer space. No one thought it was possible to make them on Earth. John Ugelstad, a Norwegian chemical engineer, did not accept that fact. He completed several difficult calculations, which enabled him to produce these tiny beads on Earth,” Marie explains.

Thanks to the tiny beads, Thermo Fisher Scientific has experienced huge global success. Even though there are only 200 employees situated in Norway (out of 70 000 employees globally), the research and development conducted in Norway is extremely important for the whole company.

“We are proud to announce that every year Dynabeads are used in almost 5 billion diagnostic tests in the world,” Marie says.

Thermo Fisher Scientific has developed the beads further, so they can be used in CAR T-cell therapy to treat cancer. The first approved CAR T-cell therapy in the world that treats child leukaemia was approved in Norway in December 2018. The advanced technology is based on the Norwegian invention “Ugelstad-kulene”.

  • Watch the video from the Norwegian TV channel TV2 about Emily Whitehead, the first child in the world that received this CAR T-cell therapy. She visited Thermo Fisher Scientific in Oslo in March 2019.

Catching killers

Elisabeth and Mary are supervising the students in the lab

Elisabeth Breivold and Marie Bosness from Thermo Fisher Scientific supervised the students in the lab. Photo: Elisabeth Kirkeng Andersen

“The beads are used for many different purposes and you will learn about a few of them today. Simply put, the beads are like a fishing rod. Depending on which bait you fix to it, the rod can be used in different ways,” Marie says. “Before lunch, we will use Dynabeads for DNA profiling. This technology is commonly used by police to identify suspects after a crime, just like in the TV series CSI.”

During the presentation, Marie shows the students the front page of an American newspaper with a mugshot of Gary Ridgway, an American serial killer, also known as “The Green River Killer”. Ridgway has now confessed to killing 71 women. For many years, the police hunted the murderer without any luck. Finally, new technology enabled the police to retrieve damning evidence from the tiny amounts of DNA that Ridgway had left on his victims. The DNA evidence led to a successful conviction of the killer.

“The DNA evidence was established with DNA profiling, using Thermo Fisher Scientific’s products. They did not use Dynabeads back then, but today, they would have used the beads. You will learn how to do it yourselves in the lab,” Marie says.

Learning to profile DNA

Olav takes the mouth swab

Olav performs a mouth swab on himself, the first step to retrieve the DNA. Photo: Elisabeth Kirkeng Andersen

Before the students enter the laboratory, they need to put on protective glasses, lab coats and plastic shoe covers. The students will profile their own DNA, the same way the police profile the DNA from suspects or criminals.

First, the Ullern students collect the cells with a mouth swab. Then, they add the different enzymes and chemicals that will open the cell membranes into the test tube, so that the DNA is released.

Afterwards, the Ullern students add “Ugelstad-kulene”, which bind to the DNA like magnets. Then, they retrieve their DNA from the solution.

They put the DNA in a kind of “photocopier”, in order to study it with something called “gel electrophoresis”. This is a method for analysing individual parts of DNA that make up the human genome. It shows a bar code pattern, which is completely unique for every person in the world.

Tor is using the pipette in the lab.

Tor adds new chemicals to the solution with his DNA. Photo: Elisabeth Kirkeng Andersen

“DNA is incredibly stable, which means that we can retrieve it from people and animals that died a long time ago and copy their DNA so that it can be analysed,” Marie explains.

“The most fun was to retrieve our own DNA. We tried it ourselves and it was fun to learn how to do it,” Philip says.

The Ullern students were very happy with their work placement at Thermo Fisher Scientific.

“I think the placement was educational and interesting. It was very well arranged and we got to try many different things. What surprised me the most was probably the close collaboration between scientists at Thermo Fisher Scientific – it seemed like everyone knew each other!” Philips says at the end of the day.

After the students had completed the DNA profiling, they ate lunch and then they learned more about the use of “Ugelstad-kulene” in diagnostics, and CAR T-cell therapy.

Elisabeth Breivold supervised the students while they performed the DNA profiling in the laboratory at Thermo Fisher Scientific. Photo: Elisabeth Kirkeng Andersen

 

Sign up to OCC newsletter

Martin Bonde, CEO Vaccibody.

Dynamic networking and pitch sessions at ICCS 2019

Oslo Cancer Cluster and its international partners organised the International Cancer Cluster Showcase (ICCS) on 3 June in Philadelphia, kickstarting this year’s BIO International Convention.

The aim of this annual event is to showcase cutting edge oncology research and development activities performed in start-ups and biotechs from Oslo Cancer Cluster and its international partners from North America and Europe.

This year’s meeting offered a compact program including company presentations, engaging poster sessions and lively networking among representatives of the international oncology community.

Jutta Heix, Head of International Affairs at Oslo Cancer Cluster, and main organizer of the event:

“Building on the first meeting at the Whitehead Institute in Cambridge in 2012, ICCS was established as a successful format to expose and connect emerging oncology companies to executives of the global oncology community attending the BIO International Convention.

“Via collaboration with partners from North American and European innovation hubs, we gather a strong group of exciting new companies and attract more than 200 participants.”

Jan Alfheim, CEO of Oncoinvent, another member of Oslo Cancer Cluster also held a presentation.

Among this year’s presenters were our members OncoInvent and Vaccibody. The dynamic pitch session featured 20 companies from 9 countries advancing a variety of innovative oncology technologies and assets in preclinical and clinical development.

“ICCS was a great opportunity to present Vaccibody and our recent progress towards a relevant international audience. It triggered new contacts and stimulated good discussions following the presentation.”
Martin Bonde, CEO of Vaccibody

Commenting on the highlights, Heix said:

“The National Institutes of Health / National Cancer Institute (NCI) participated for the 2nd time. Michael Salgaller, Supervisory Specialist Technology Transfer Center presented the partnering opportunities and benefits the NCI offers to outside parties from academia and industry.

“Our sponsors Precision for Medicine, Takeda Oncology and Boehringer Ingelheim enriched the program by short presentations and active discussions during the humming poster and networking sessions.”

 

The event was sponsored by:

 

The event was organised by:

Learning about the human brain

Oslo Cancer Cluster and Ullern Upper Secondary School arranged a work placement for students to learn about neuroscience at the University of Oslo.

Four biology students from Ullern Upper Secondary School spent two great days on work placement with some of the world’s best neuroscientists at the University of Oslo. In Marianne Fyhn’s research group, the students tried training rats and learned how research on rats can provide valuable knowledge about the human brain.

The Ullern students, Benedicte Berggrav, Lina Babusiaux, Maren Gjerstad Høgden and Emmy Hansteen, first had to dress in green laboratory clothes, hairnets and gloves. They also had to leave their phones and notepads behind, before enterring the animal laboratory where Marianne Fyhn and her colleagues work. Finally, they had to walk through an air lock that blew the last remnants of dust and pollution off them.

On the other side was the most sacred place for researchers: the newly refurbished animal laboratory. It is in the basement of Kristine Bonnevies Hus on the University of Oslo campus. We used to call it “Bio-bygget” (“the bio-building”) when I studied here during the ‘1990s.

 

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

It is the second day of the students’ work placement with Marianne. The four biology students, who normally attend the second year of Ullern Upper Secondary School, have started to get used to their new, temporary jobs. They are standing in one of the laboratories and looking at master student Dejana Mitrovic as she is operating thin electrodes onto the brain of a sedated rat. PhD student Malin Benum Røe is standing behind Dejana, watching intently, giving guidance and a helping hand if needed.

“We do this so we can study the brain cells. We will also find out if we can guide the brain cells with weak electrical impulses. This is basic scientific research. In the long term, the knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm,” Marianne explained.

“The knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm.”

Dejana needs to be extremely precise when she connects the electrodes onto the rat’s brain. This is precision work and every micrometre makes a difference.

 

Training rats

The previous day, Maren, Benedicte, Lina and Emmy helped to train the rat on the operating table on a running course. Today, the Ullern students will train the other rats that haven’t had electrodes surgically connected to their brains yet.

“We will train the rats to walk in figures of eight, first in one direction and then the other”, the students explained to me.

We remain standing in the rat training room for a while, talk with Dejana and train some of the rats. Dejana tells me that the rats don’t have any names. After all, they are not pets, but they are cared for and looked after in all ways imaginable.

“It is very important that they are happy and don’t get stressed. Otherwise, they won’t perform the tasks we train them to do,” says Dejana. She and the other researchers know the animals well and know to look for any signs that may indicate that the rats aren’t feeling well.

“It is very important that they are happy and don’t get stressed.”

I ask the students how they feel about using rats for science.

“I think it is completely all right. The rats are doing well and can give us important information about the human brain. It is not okay when rats are used to test make-up and cosmetics, but it is a whole different matter when it concerns important medical research,” says Emmy and the other biology students from Ullern nod in agreement.

 

Understanding the brain

Marianne is the head of the CINPLA centre at the University of Oslo, where Maren, Benedicte, Lina and Emmy are on work placement for two days. Four other Ullern students, Henrik Andreas Elde, Nils William Ormestad Lie, Hans Christian Thagaard and Thale Gartland, are at the same time on a work placement with Mariannes research colleague, Professor of Physics Anders Malthe-Sørenssen. They are learning about methods in physics, mathematics and programming that help researchers to better understand the brain.

“CINPLA is an acronym for Centre for Integrative Neuroplasticity. We try to bring together experimental biology with calculative physics and mathematics to better understand information processing in the brain and the brain’s ability to change itself,” says Marianne.

Physics, mathematics and programming are therefore important parts of the researcher’s work when analysing what is happening in the rat’s brain.

If you think that research on rats’ brain cells sounds familiar, then you are probably right. Edvard and May-Britt Moser in Trondheim received the first Norwegian Nobel Prize in Medicine in 2014. The award was given to them for their discovery of a certain type of brain cells, so called grid cells. The grid cells alert the body to its location and how to find its way from point A to point B.

Marianne did her PhD with Edvard and May-Britt, playing an essential role in the work that led to the discovery of the grid cells. Marianne was therefore very involved in Norway securing its first Nobel Prize in Medicine.

 

The dark room

Another room in the animal section is completely dark. In the middle of the room, there is an enormous box with various equipment. In the centre of the box, there is a little mouse with an implant on its head.

In this test room, there is an advanced microscope. It uses a laser beam to read the brain activity of the mouse as it alternates between running and standing still on a treadmill.

The researcher Kristian Lensjø is back from a longer study break at the renowned Harvard University and will use some of the methods he has learned.

“I will train the mouse so that it understands that for example vertical lines on a screen mean reward and that horizontal lines give no reward. Then I will look at which brain cells are responsible for this type of learning,” says Kristian.

The students stand behind Kristian and watch the mouse and the computer screen. When the testing begins, they must close the microscope off with a curtain so that the mouse is alone in the dark box. Kristian assures us that the mouse is okay and that he can see what the mouse is doing through an infra-red camera.

“This room and the equipment is so new, we are still experiencing some issues with the tech,” says Marianne. But Christian fixes the problem and suddenly we see something on the computer screen that we have never seen before. It is a look into the mouse’s brain while it runs on the treadmill. This means that the researchers can watch the nerve cells as the mouse looks at vertical and horizontal lines, and detect where the brain activity occurs.

 

Research role models

The students from Ullern know they are lucky to see how cutting-edge neuroscience is done in real life. Marianne and her colleagues are far from nobodies in the research world. Bente Prestegård from Oslo Cancer Cluster and Monica Jenstad, the biology teacher at Ullern who coordinates the work placements, made sure to tell the students beforehand.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level. They can see that the people behind the research are nice and just like any normal people. When seeing good role models, it is easier to picture a future in research for oneself,” says Monica.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level.”

Monica and Marianne have known each other since they were master students together at the University of Tromsø almost twenty years ago.

“I know Marianne very well, both privately and professionally. She is passionate about her research and about dissemination and recruitment. She also works hard to create a positive environment for her research group. Therefore, it was natural to ask Marianne to receive the students and it wasn’t difficult to get her to agree,” says Monica.

Back in the first operating room, Dejana and Malin are still operating on the rats. They will spend the entire day doing this. It takes time when the equipment needs to be found and sterilised, the rats need to be sedated and then operated on as precisely as possibly. It is past noon and time for lunch for Marianne, Kristian and the Ullern students on work placement.

Before I leave them outside Niels Henrik Abels Hus at the Oslo University Campus, I take a picture to remember the extra-ordinary work placement. And not least: to store a picture of the memory in my own brain.

 

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

 

Sign up to OCC newsletter

Introducing programming to the curriculum

Programming is not only for computer hackers, it can also help teachers to engage their students in science subjects and inspire start ups to discover new cancer treatments.

 

Almost 60 teachers working in upper secondary schools in Oslo visited Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School one evening in the end of March. The topic for the event was programming and how to introduce programming to the science subjects in school.

“The government has decided that programming should be implemented in schools, but in that case the teachers first have to know how to program, how to teach programming and, not least, how to make use of programming in a relevant way in their own subjects.”

This was how Cathrine Wahlström Tellefsen opened her lecture. She is the Head of Profag at the University of Oslo, a competence centre for teaching science and technology subjects. For nearly one hour, she talked to the almost 60 teachers who teach Biology, Mathematics, Chemistry, Technology, Science Research Theory and Physics about how to use programming in their teaching.

 

What is KUR? KUR is a collaborative project between Oslo Cancer Cluster, Ullern Upper Secondary School and other schools in Oslo and Akershus. It aims to develop the skills and competence of science teachers. Every six months, KUR arranges a meeting where current topics are discussed.

 

Programming and coding

“Don’t forget that programming is much more than just coding. Computers are changing the rules of the game and we have gained a much larger mathematical toolbox, which gives us the opportunity to analyse large data sets,” Tellefsen explained.

Only a couple of years ago, she wasn’t very interested in programming herself, but after pressures from higher up in her organisation, she gave it a shot. She has since then experienced how programming can be used in her own subject.

“I have been a Physics teacher for many years in an upper secondary school in Akershus, so I know how it is,” she said to calm the audience a little. Her excitement over the opportunities programming provides seemed to rub off on some of the people in the room.

“In biology, for example, programming can be used to teach animal population growth. The students understand more of the logic behind the use of mathematical formulas and how an increase in the carrying capacity of a biological species can change the size of its population dramatically. My experience is that the students start playing around with the numbers really quickly and get a better understanding of the relationships,” said Tellefsen.

When it was time for a little break, many teachers were eager to try out the calculations and programming themselves.

 

Artificial intelligence in cancer treatments

Before the teachers tried programming, Marius Eidsaa from the start up OncoImmunity (a member of Oslo Cancer Cluster) gave a talk. He is a former physicist and uses algorithms, programming and artificial intelligence every day in his work.

“OncoImmunity has developed a method that can find new antigens that other companies can use to develop cancer vaccines,” said Eidsaa.

He quickly explained the principals of immunotherapy, a cancer treatment that activates the patient’s own immune system to recognise and kill cancer cells, which had previously remained hidden from the immune system. The neoantigens play a central role in this process.

“Our product is a computer software program called Immuneprofiler. We use patient data and artificial intelligence in order to get a ranking of the antigens that may be relevant for development of personalised cancer vaccines to the individual patient,” said Eidsaa.

Today, OncoImmunity has almost 20 employees of 10 different nationalities and have become CE-marked as the first company in the world in their field. (You can read more about OncoImmunity in this article that we published on 18 December 2018.)

The introductory talk by Eidsaa about using programming in his start up peaked the audience’s interest and the dedicated teachers eagerly asked many questions.

 

Programming in practice

After a short coffee break, the teachers were ready to try programming themselves. I tried programming in Biology, a session that was led by Monica, a teacher at Ullern Upper Secondary School. She is continuing her education in programming now and it turns out she has become very driven.

“Now you will program protein synthesis,” said Monica. We started brainstorming together about what we needed to find out, which parameters we could use in the formula to get the software Python to find proteins for us.

Since my knowledge in biology is a little rusty, it was a slow process. But when Monica showed us the correct solution, it was surprisingly logical and simple. The key is to stay focused and remember to have a cheat sheet right next to you in case you forget something.

 

Sign up to OCC newsletter

Kronikk: Dine helsedata kan styrke helsenæringen

This opinion piece was first published on 9 May 2019 in Dagens Medisin, by Ketil Widerberg, General Manager at Oslo Cancer Cluster, and Christian Jonasson, Senior Adviser at NTNU. Both are also members of a work group for innovation and business development for the Health Data Program for the the Norwegian Directorate of eHealth. Please scroll to the end of this page for an English summary.

 

Vi får nye forretningsmodeller innen helse som er basert på digitalisering og persontilpasset medisin. Her kan Norge virkelig lede an!

Christian Jonasson, seniorforsker ved NTNU.

Christian Jonasson, seniorforsker ved NTNU.

Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

HELSE BLIR digitalisert og medisin blir tilpasset den enkelte pasienten. Dette er to megatrender som vil endre forretningsmodellen for helseindustrien. Forrige uke kom Stortingsmeldingen om nettopp helsenæringen. Den åpner for store muligheter for Norge.

I bilindustrien erstatter gradvis digital mobilitet den tradisjonelle boksen på fire hjul. Et eksempel er at Tesla blir verdsatt høyere enn tradisjonelle bilprodusenter blant annet for sin evne til kontinuerlig datainnsamling fra bilene. I helsenæringen vil vi se det samme.

 

NYE MODELLER. Med digital persontilpasset medisin vil nye forretningsmodeller vokse frem. Vi ser eksemplene daglig: Roche, et globalt legemiddelselskap, har nylig kjøpt opp helsedataselskapet Flatiron. Oppkjøpet gjorde de for å kunne utvikle nye kreftbehandlinger raskere, for nettopp tid er viktig for kreftpasienter som kjemper mot klokka. Et annet legemiddelselskap, AstraZeneca, har ansatt toppleder fra NASA. Norske DNVGL, som tradisjonelt har jobbet med olje, gass og shipping, har nå helsedata som et satsingsområde.

Helsemyndigheter erkjenner også endringen mot mer datainnsamling. Legemidler blir mer målrettede og brukes på stadig mindre undergrupper av pasienter. Dette utfordrer hva som er nødvendig kunnskapsgrunnlag for å gi pasienter tilgang til ny behandling. Mens det i dag er kunnskap om gjennomsnitt for store pasientgrupper som ligger til grunn for beslutninger om nye behandlingsmetoder, er det med persontilpasset behandling nettopp viktig å ta mer hensyn til individer og små undergrupper. De amerikanske helsemyndighetene (FDA) har derfor lagt frem retningslinjer for hvordan helsedata kan brukes som beslutningsgrunnlag for nye legemidler.

 

NORSKE FORTRINN. Legemiddelverket i Norge gir uttrykk for at de også ønsker å være i front i denne utviklingen – for også de ser at helsedata gir bedre beslutningsgrunnlag.

Hvordan kan så Norge lede an? Norge har konkurransefortrinn knyttet til et sterkt offentlig helsevesen, landsdekkende person- og helseregister og biobanker som kan knyttes sammen gjennom våre unike fødselsnummer. Dette er få land forunt! Derfor kan vi utnytte dette konkurransefortrinnet for å ta en posisjon i den store omveltningen av helsesektoren og helsenæringen.

Nedenfor følger noen forslag som vi mener vil styrke Norges stilling.

 

PLATTFORM. Vi kan starte med å lage en norsk dataplattform. Selskap leter globalt etter helsedata av god kvalitet. La oss utvikle en dataplattform hvor helsedata er raskt og sikkert tilgjengelig for norske og utenlandske aktører. Et eksempel er helseanalyseplattformen. Her må data gjøres tilgjengelig for alle aktører og for alle legitime formål. Samarbeidsmodeller må utvikles som sikrer at verdiskapingen blir i Norge og pasientene får bedre behandling.

Vi kan utvikle bedre økosystemer. Verdiskapingspotensialet for helsedata ligger i skjæringspunktet mellom offentlig og privat. Dagens offentlige forvaltere av helsedata må derfor samarbeide tettere med norske oppstartsbedrifter og internasjonale aktører.

 

INNSYN. Vi kan bruke personvern som konkurransefortrinn. Hver og en av oss eier våre egne helsedata. Derfor er det viktig med digitale plattformer som gir oss innsyn i egne helsedata.

Hvordan vi kommer til å bruke helsedata om få år, er vanskelig å forutse, akkurat som det var vanskelig å forutse hva konsesjonsutlysningen for oljeutvinning i 1965 ville føre til. Historien viser imidlertid at slike avgjørelser kan ha stor betydning for fremtidens verdiskapning i Norge, og for pasienter i hele verden. La oss derfor ikke overlate til tilfeldighetene hva vi i Norge gjør med våre helsedata.

 

 

English summary:

Digitalisation and precision medicine are influencing emerging business models in the health industry. It is time for Norway to lead the way!

As precision medicine develops, data gathering becomes ever more important. Instead of relying on results from a big patient group, cancer researchers are using big data to find out how treatments can be customised for small patient groups and individual patients.

Norway has a competitive advantage on health data: thanks to its strong public health sector, national health registers and biobanks that can be connected to unique personal ID numbers.

We suggest creating a common platform for Norwegian data, where high quality data can be accessed securely by legitimate national and international companies. Through collaborative models, we can ensure that the medical breakthroughs stay in Norway and benefit the patients. We need to develop better ecosystems that inspire simple collaboration between international key players, Norwegian start ups and the public agencies that handle health data.

Data privacy can be used as an asset. If we ensure everyone has complete access and insight into their own personal health data, people can be empowered to share it for the common good.

The decisions we make today will have great ramifications for the future value creation in Norway and for cancer patients across the world. We should not leave it up to chance.

 

Sign up to OCC newsletter

The students in the picture are Jacques Li, a doctor and entrepreneur from France; Diana Murguia Barrios, an economist and political scientist from Spain; Jason Yip, a chemistry engineer from England; and Sam Chong, a lawyer and economist from Malaysia and Australia.

Should Norway implement a clinical trial league table?

We asked four MBA students from Cambridge University to evaluate how patient recruitment practices in Norway can be improved.

The number of clinical trials in Norway has been declining over the last few years. There are many reasons behind this trend, but until now there have been few concrete solutions. With the number of cancer patients on the rise, there is a growing need for access to better treatments.

Oslo Cancer Cluster asked four students from Judge Business School at Cambridge University to research how the number of clinical trials in Norway can be improved. The students were Jacques Li, a doctor and entrepreneur from France; Diana Murguia Barrios, an economist and political scientist from Spain; Jason Yip, a chemistry engineer from England; and Sam Chong, a lawyer and economist from Malaysia and Australia.

“The number of clinical trials in Norway is less than half of the number in Denmark.”

The group focused on one of three factors that influence the number of clinical trials in Norway, namely: the patient recruitment practices. After a comparative analysis with other European countries, they came up with two main recommendations on how Norway can improve patient recruitment.

 

Image och doctors and nurses walking in corridor

How do we motivate hospitals and doctors to recruit more patients to clinical trials?

 

One: Motivating hospitals

The group compared patient recruitment in Norway to France, United Kingdom and USA. Norway was the only country where hospitals don’t have any non-financial incentives to recruit patients to clinical trials. If a hospital’s reputation could be improved in a concrete way by having clinical trials, patient recruitment could also be improved.

The group proposed to create a league table for all hospitals, with cancer trial participation as one of the metrics. This would create competition between hospitals, encourage collaboration between smaller hospitals and larger ones, and make information about clinical trials accessible to patients.

If hospitals were ranked against each other based on clinical trial output, they would more actively recruit into trials due to the reputational incentive.” 

The group also uncovered a misalignment between the funding source and the implementers of the clinical trials. Funding is passed from the Norwegian Health Ministry to the regional health authorities, instead of directly to the hospitals who conduct the trials. The group recommended that the hospitals need direct financial incentives to conduct the trials.

“Regional health authorities in Norway need to ensure that funding provided to them for research is passed down to the hospitals conducting clinical trials.” 

 

How do we raise awareness among patients and doctors about clinical trial participation?

 

Two: Raising awareness

A second discovery in the report was the lack of awareness about clinical trials among both patients and doctors. Patients in Norway lack access to relevant information that would empower them to opt into clinical trials. There was similarly a lack of exposure to clinical trials among early career doctors and a lack of initiatives to collaborate on clinical trials among advanced career doctors.

“Raising awareness among stakeholders is key to improve clinical trial recruitment.” 

The students suggested working in partnership with patient organisations to raise awareness among patients. They recommended a national awareness campaign to inform where patients can find up-to-date information about clinical trials. All hospitals could keep lists of their ongoing clinical trials available on their websites.

If patients knew the benefits of clinical research, they would select a hospital that is ranked highly.” 

The group also provided recommendations to raise awareness among doctors to work on clinical trials. Rotational programs and supplementary courses on research methods and clinical trials may spark interest among medical students to pursue work in clinical trials. Seminars and workshops can help to both raise awareness and inspire collaborative efforts among doctors in their advanced careers.

 

Oslo Cancer Cluster wishes to extend a big thank you to everyone who agreed to be interviewed for this research project:

  • Ali Areffard, Medical team, Bristol Myers Squibb
  • Øyvind Arnesen, Chairman of the Board, Oslo Cancer Cluster
  • Siri Kolle, Vice President Clinical, Inven2
  • Jónas Einarsson, former Chairman of the Board of Oslo Cancer Cluster and one of the founders of Oslo Cancer Cluster Innovation Park
  • Maiken Engelstad, Deputy Director, Ministry of Health and Care Services
  • Katrine Bryne, Senior Advisor, Legemiddelindustrien (LMI)
  • Kristin Bjordal, Business Manager for Research Support and Research Manager in Oslo Hospital Service (OSS) and Chairman of the Board of NorCrin
  • Ida Kommandtvoll, Advisor, Department of Strategy and Analysis, The Norwegian Cancer Society
  • Knut Martin Torgersen and medical team, Merck
  • Steinar Aamdal, the founder of The Clinical Trial Department, Oslo University Hospital

 

View and download the following PDF of the Cambridge report to learn more.
Note: This is a short version of the report, the fuller version also includes an Appendix containing detailed information about all the underlying data and interview material. Please get in touch with Communications Adviser Sofia Lindén if you are interested in reading the full Appendix.

Download [1.27 MB]

 

Sign up to OCC newsletter

Ketil Widerberg, general manager, OCC

Hvordan gjør vi våre mest intime data til gull?

The following opinion piece was written by Ketil Widerberg, General Manager at Oslo Cancer Cluster, and published in Aftenposten on 1 May 2019. It is a response to an opinion piece written by Nikolai Astrup, the Norwegian Minister of Digitalization, which was published on 22 April 2019. The texts are only available in Norwegian, but a short summary in English is available at the bottom of this page.

 

Helsedata er en voksende gullåre, men vi kan ikke grave i den uten videre.

 

I Aftenposten 17. april svarer digitaliseringsminister Nikolai Astrup (H) på en appell om våre verdifulle data.

Astrup påpeker at data ikke kan sammenlignes med olje, for det er ikke staten, men hver og en av oss, som eier våre egne personopplysninger.

Det gjelder i høyeste grad de mest intime av våre data: helsedata.

 

En gullåre av data

Helsedata er en voksende gullåre, men vi kan ikke grave i den uten videre.

Hadde vi ikke først bygd opp beskyttelse av norske data og kompetanse, ville ikke prosjekter som DoMore blitt til.

Forskerne i DoMore bruker avansert bildeanalyse for å gi mer presise kreftprognoser. Samtidig ville ikke prosjektet eksistert uten internasjonale data og kompetanse.

For næringen som jeg jobber i, helsenæringen, er spørsmålet hvordan vi skal unngå å falle i digitaliseringsfellen. Der har mediebransjen landet.

Facebook og Google får all verdens data gratis gjennom samtykke og tar dermed livsgrunnlaget fra tradisjonelle aktører.

 

Trenger god strategi for kunstig intelligens

For norsk helsenæring blir de to strategiene som digitaliseringsministeren snart lanserer, digitalisering i offentlig sektor og kunstig intelligens, svært viktige. I en strategi for offentlige data oppfordrer jeg derfor til at fremskritt innen presisjonsmedisin tas med.

Da Kreftregisteret ble etablert på 50-tallet, forsto ingen den fulle nytteverdien av et slikt register. I dag tiltrekkes forskere og bedrifter fra hele verden for å få bruke data derfra.

Det viser hvorfor vi også i dag bør samle inn mer helsedata enn vi kan dra nytte av umiddelbart.

Hvordan finner vi balansen mellom god bruk av helsedata for å skape næring og rå utnyttelse av store firmaer? Her trenger vi en god strategi også for kunstig intelligens, som tar inn over seg denne balansegangen i helsedata.

Kunstig intelligens gjør presisjonsmedisin mulig på et helt annet nivå enn vi er på i dag, med mye høyere presisjon i behandlingen.

 

Ressurs for pasienter

For fremtidens presisjonsbehandling er helsedata ressursen vi må samle på. Vi må samle inn helsedata som gjør behandlingen bedre for neste pasient. Og vi trenger en struktur av dataene der både firmaer og myndigheter har tilgang til dem.

Jeg vil gjerne legge lista høyt og foreslå en felles database for data fra kliniske studier, hvor både firmaer og myndigheter har tilgang til helsedata umiddelbart etter at hver pasient har fått sin behandling.

Dette kan bidra til raskere tilgang til ny behandling og bedre oppfølging av pasienter med sykdommer som kreft.

Data former kreftbehandling og skaper nye tilbud til pasienter. Hvordan sikrer vi verdien av dataene? Skal vi gi dem bort for å bygge forskning og industri, skal vi ta så mye penger som vi kan for dem, eller skal vi prøve å finne på noe midt imellom?

I arbeidet med de nye strategiene bør våre mest intime data bli diskutert – med sikte på å skape verdi og næring av dem.

 

 

Short summary in English:

The question Astrup raised in his opinion piece concerned how data sharing can be improved across the public sector in Norway.

Widerberg responds by highlighting how we can make use of our health data to create added value and a successful health industry, without allowing large multinational corporations exploit the data freely.

Artificial intelligence makes precision medicine possible on a much higher level than today. We need to collect health data in order to improve treatments for future patients.

Widerberg therefore proposes a database where health data from all clinical trials is made available to both private and public bodies. This would contribute to making better treatments available sooner and provide better follow-up to patients suffering from diseases, such as cancer.

 

Sign up to OCC newsletter

Ny rapport: Helsenæringens verdi 2019

Rapporten gir innsikt i en næring som i 2018 omsatte for 142 milliarder kroner.

Helsenæringen er en dobbel mulighet for Norge: næringen kan løse mange av våre helse- og omsorgsutfordringer de neste tiårene og samtidig bli en av våre største næringer, med eksport til et globalt marked.

Den fjerde Menon-rapporten om helsenæringens verdi går nærmere inn på tallene bak disse mulighetene.

 

Viktige funn i rapporten:

  • Omsetningen i helsenæringen var på 142 milliarder kroner i 2018.
  • Helsenæringen er global og bedriftene i industrien vender seg mot internasjonale markeder tidlig.
  • Helserelatert eksport var på over 23 milliarder kroner i 2018.
  • Næringen er avhengig av ny kapital i utviklingsløpet: fire av ti bedrifter hentet inn ny egenkapital i 2018.
  • Helseindustrien er en gründernæring: en av ti bedrifter er i gründerfasen.
  • Det er en svært FoU-intensiv næring, der spesielt kliniske studier er viktig. Likevel falt antall søkte industrifinansierte kliniske studier fra 175 i 2000 til bare 72 i 2018.

 

I rapporten defineres Helsenæringen som private aktører i hele verdikjeden innen helse i Norge.

 

Hjemmemarked og risikokapital

Mye er på plass for norsk helsenæring, men i følge Menon mangler to ting: Det ene er et stort hjemmemarked med kompetente, krevende lokomotivkunder. Det andre er langsiktig risikokapital for raskere utviklings-, kommersialiserings- og vekstprosesser.

– Det som er litt fint med de to utfordringene, er at de henger tett sammen. Lykkes man med det første, er sjansene store for å lykkes med det andre, understreket Erik W. Jakobsen, Managing Partner i Menon Economics, under lanseringen.

 

En internasjonal næring

Under lanseringsarrangementet i Næringslivets Hus i Oslo 25. april, ble enda et utspill lansert:

Innovasjon Norge med samarbeidspartnere, blant annet Oslo Cancer Cluster, lanserte en global strategi for norsk helseindustri. Den heter “Pioneering sustainable health”.

– Helse er en «born global næring», og det må vi nå utnytte. Vi må gjøre norske helseløsninger bedre kjent internasjonalt. Visjonen er å tredoble norsk helseindustri innen 2030, sa Hans Eirik Melandsø, sektoransvarlig helseindustri i Innovasjon Norge.

Næringsminister Torbjørn Røe Isaksen (H) var også med på arrangementet og presenterte hovedpunkter fra Regjeringens stortingsmelding om helsenæringen, som ble lansert 5. april. Stortingsmeldingen kan du lese på nettsidene til Regjeringen.

Hvordan kan norsk helsenæring lykkes i å ta en internasjonal posisjon? Det er et nøkkelspørsmål som går igjen i rapporten fra Menon, Stortingsmeldingen om helsenæring og posisjonen “Pioneering sustainable health”.

– Vi ligger i et helsenæringsnabolag. Sverige er store, Danmark er veldig store. Det er en stor fordel at “the Nordic region” er kjent for og har kompetanse på dette fra før. Det må vi utnytte bedre, sa Torbjørn Røe Isaksen.

Ordskifte mellom stortingsrepresentant Ingvild Kjerkol (Ap) og næringsminister Torbjørn Røe Isaksen (H). De var enige om behovet for bedre samarbeid mellom private og offentlige aktører.

 

Offentlig-privat kulturendring

En bedre kultur og insentiver for samarbeid er et annet viktig poeng når norsk helsenæring diskuteres.

– For mange private aktører møter skepsis, stengte dører og problematisering når de forsøker å samarbeide med det offentlige. Vi må ha tjenester som slipper næringen til, slik at næringen også kan forstå hva som skal til, sa Torbjørn Røe Isaksen.

– Det jeg savner i Stortingsmeldingen, er klyngene og TTO-ene. Når vi ser på Menons vekstrater for industrien, ser vi at det er noe som fungerer bra. Framover bør vi gjøre mer av det som fungerer, og ikke bare finne på nye virkemidler. I en videre strategi bør klyngenes rolle få en større plass og utvikles, sa stortingsrepresentant Ingvild Kjerkol (Ap).

 

Du kan lese hele rapporten her:

Bilde av Menon-rapporter om Helsenæingens verdi 2019

Menon-rapporten Helsenæingens verdi 2019

 

 

Lenker til Menon-rapportene om helsenæringens verdi fra tidligere år:

Rapport fra 2018

Rapport fra 2017

Rapport fra 2016

 

Menon-rapporten utgis av: 

Andre relevante saker: 

Meet our new members

Oslo Cancer Cluster proudly presents the new members that have joined our organisation during the first quarter of 2019.

 

The new members represent a valuable addition to our non-profit member organisation, which encompasses the whole oncology value chain. By being a part of Oslo Cancer Cluster, our members are connected to a global network with many relevant key players in the cancer research field. Our members contribute to this unique ecosystem and ensure the development of innovative cancer treatments to improve patients’ lives.

 

HalioDx

HalioDx is an immuno-oncology diagnostic company providing immune-based services, which guide cancer care and contribute to precision medicine. HalioDx executes biomarker studies and develop diagnostic devices, in accordance with regulations and in partnership with biopharmaceutical companies. By being a member of Oslo Cancer Cluster, HalioDx can collaborate with academia and industry to deliver clinical research and diagnostic tools that help find the right therapy for the right patient.

“Immuno-oncology and precision medicine are two main focuses of interest for Oslo Cancer Cluster and this is the reason why HalioDx decided to become a part of Oslo Cancer Cluster.” 

“We are convinced that this collaboration will be of mutual benefit and we hope that HalioDx’s comprehensive clinical research platform will represent a great tool for the academic and pharma members who would like to better understand drugs mechanisms of action and identify the right patients for the right therapy.”
Aurélie Fugon, Associate Director, HalioDx

 

 

 

MultiplexDX

MultiplexDX is a biotech corporation with the aim to eliminate misdiagnosis of cancer disease. The company’s idea is to create 100% reliable, quantitative, affordable and personalised diagnostic tests. By combining tissue visualisation and sequencing technologies, they can accurately quantify 7 or more cancer markers, generating a specific “barcode”. This unique barcode can then specify the type of cancer and suggests which personalised treatment and medicines to be used, and how long the therapy should last.

“We believe that Oslo Cancer Cluster is the best cancer cluster in the world representing the entire oncology value chain that we want to be part of.” Pavol Cekan, CEO, MultiplexDX

“We plan to create strategic partnerships with Oslo Cancer Cluster members to bring our breast cancer diagnostic test, Multiplex9+, to the market as soon as possible. In assistance with Oslo Cancer Cluster and its members, we want the breast cancer patients to benefit from our 100% accurate, reliable and diagnostic test at the earliest convenience.” 

 

Sanofi (Norway)

Sanofi is a global pharmaceutical company and one of their main areas of treatment concerns oncology. Every year, they invest 15% of their revenue into research and development. They do phase I, II and III clinical trials to get new medicines approved for treatment. They want to remain innovative, because they believe that the research they perform today will contribute to preventing and treating diseases in the future.

“Sanofi has a long legacy with R&D in oncology. In the years to come oncology and hematology will be one of the biggest therapeutic areas at Sanofi.

“By becoming a member of Oslo Cancer Cluster we believe that we are able to contribute to unlocking tomorrow’s science by supporting the latest advances in treating cancer in Norway and beyond.” Britt Moe, General Manager, Sanofi (Norway)

“This is especially interesting since in the treatment of cancer, new mechanisms of actions and developments, such as immune-oncology therapies, are very much in the focus.” 


Thommessen

Established in 1856, Thommessen is a leading commercial law firm with offices in Oslo, Bergen, Stavanger and London. The firm provides advice to Norwegian and international companies as well as organisations in the public and private sectors, ranging from start-ups, via small and medium size companies to large multi-national corporations. Thommessen covers all business related fields of law.

“We believe that early identification of potential legal issues before they arise is important.” Mirella Gullaksen, Head of Projects and Business Development, Thommessen

“Investing in early phase biotech/oncology companies should be about the relevant team, technology and product breakthrough. All other risks relating to the company, and investments should be reduced to a minimum”. 

 

  • This post is the first in a series of articles, which will introduce the new members of our organisation every three months.
  • Follow us on Facebook or subscribe to our newsletter to always stay up to date!
  • To find out who else is involved in Oslo Cancer Cluster, view the full list of members.

 

Sign up to OCC newsletter

Giving patients a stronger voice

How can the voices of cancer patients be heard when evaluating new methods of treatment?

A breakfast seminar was held yesterday in the series called The Cancer Treatments of the Future. Over 150 people attended at Litteraturhuset in Oslo, among them were relevant key players from the healthcare sector, governmental agencies, patient organisations and the public. The aim was to identify new opportunities to improve patient involvement when evaluating new methods of treatment.

The seminar was jointly arranged by Oslo Cancer Cluster, Legemiddelindustrin (LMI) and The Norwegian Cancer Society. The sponsors of the event were Astra Zeneca, Janssen and MSD.

 

Anne Grethe Erlandsen

Anne Grethe Erlandsen, the State Secretary of the Norwegian Ministry of Health and Care Services.

Anne Grethe Erlandsen, the State Secretary of the Norwegian Ministry of Health and Care Services, first talked about creating a healthcare service with the patient as the starting point. She said that it is important to involve the patient in the decision-making processes to bring in new perspectives, ask questions and challenge the healthcare service.

“The patient is the most radical agent of change in the healthcare sector.”
Anne Grethe Erlandsen

 

Ellen Nilsen

Ellen Nilsen, Special Adviser at Nye Metoder.

Next, Ellen Nilsen, Special Adviser at Nye Metoder, which is the national system for managed introduction of new health technologies within the specialist health service in Norway. Nilsen gave a presentation of Nye Metoder and its processes.

 “Anyone, including patients, their relatives or patient organisations, can submit a proposal for a new method of treatment.” Ellen Nilsen

The proposal is then managed by the regional health authorities in The Commissioning Forum, which commissions a full Health Technology Assessment (HTA) from The Norwegian Medicines Agency. Anyone can submit input to The Commissioning Forum by e-mail or in a form on the website.

Decisions are then made by the regional health authorities in The Decision Forum, based upon the HTA. Patient organisations are also represented in a reference group that meets every six months. The patient representatives are only observers, but have the right to make verbal contributions.

  • Learn more about Nye Metoder by reading this presentation in English from their official website.

 

Health Technology Assessment (HTA) is the evaluation of a new method of treatment, often in comparison to existing treatments. The treatments are assessed according to a set of criteria: the severity of the disease, the utility of the treatment and its cost effectiveness.

 

Anette Grøvan, Senior Adviser at The Norwegian Medicines Agency.

Then, Anette Grøvan, Senior Adviser at The Norwegian Medicines Agency, presented how they are developing a pilot project to involve patients in their HTAs. They have sporadically received input from patients and patient organisations in the past, but they wish to implement a better system for it now.

“Satisfied patients are important to us. Everyone should have a voice, regardless of their diagnosis or disease.” Anette Grøvan

They believe the patients can contribute with their experiences of living with the disease, the quality of existing treatments and their expectations on new treatments.

 

 

A panel discussion, moderated by Markus Moe, the Editor-in-Chief of Dagens Medisin, was then held with the following participants:

  • Tove Nakken, Head of brukerutvalget* at Oslo University Hospital and Deputy Head in Lymfekreftforeningen (The Norwegian Lymphoma Society)
  • Heidi Brorson, member of brukerutvalget* at the South-Eastern Norway Regional Health Authority and Special Adviser in the Norwegian Cancer Society
  • Anette Grøvan, Senior Adviser at The Norwegian Medicines Agency
  • Jan Frich, Chief Medical Officer at the South-Eastern Norway Regional Health Authority and Senior Adviser in the Commissioning Forum
  • Odd Terje Brustugun, oncologist at Drammen Hospital

*”brukerutvalget” is a selected group of patient representatives that exists in each regional health authority

 

The topic of the panel discussion was how to improve patient involvement when evaluating and approving new methods of treatment.

 

Nakken first highlighted the lengthy processes in Norway: “Patients want to take part of the treatments that have been approved in our neighbouring countries. But the bureaucracy in Norway takes too long.”

Brustugun agreed that there is a gap between the treatments available in Norway and abroad, and that this is affecting an ever-growing patient population: “The patient’s perspective is important, because there is a large group of patients that can potentially become long-term survivors if given the new treatments.”

Frich said the overall cost of pharmaceuticals in Norway has actually increased over the years, mostly due to new and expensive cancer therapies. He explained they are legally obliged by Stortinget to evaluate new methods according to a specific set of criteria. The reason that a treatment isn’t approved may be that the effect of it has not been documented well enough.

Brorson called for greater transparency in the decision-making processes: “If there was more openness about the decision-making, the patients would have a greater understanding for it and become better informed.”

Grøvan added: “We are not finished developing the system for patient involvement and there are a lot of considerations to make sure that it becomes structured and fair.”

 

The engaging panel discussion inspired the audience to make their own comments and reflections.

 

The fruitful discussion led to many constructive ideas on how to improve patient involvement. Hopefully, these kinds of collaborative discussions can inform politicians to take the necessary steps forward to improve cancer patients’ lives.

Oslo Cancer Cluster wants to thank the speakers, the sponsors, the organisers and everyone who attended! This discussion will continue at Arendalsuken 2019, at our event August 15. We hope to see you there!

 

  • Here is a summary of the event, written in Norwegian, from LMI’s official website.

Chemistry with mutual benefits

Students were taught about the chemistry behind developing cancer treatments in the Oslo Cancer Cluster Incubator.

In February, forty chemistry students were given a memorable specialisation day on the subject of the chemistry behind developing cancer treatments. The company Arctic Pharma in Oslo Cancer Cluster Incubator invited them to the lab and gave a long and detailed lecture on the chemistry behind the medication they are developing to treat cancer.

Karl J. Bonney, who is a researcher in the company, started the day with an interactive lecture in English about the chemistry of the substance Arctic Pharma hopes will be effective against cancer.

Bonney emphasised to the students that the company is in the early stages of the development, and that it will take approximately three to four years before they are potentially able to start clinical trials on humans to see whether the substance is effective.

The pupils who are studying chemistry as their specialisation in the last year of upper secondary school were obviously fascinated by what they heard. They asked many important questions both to the lecturer, Bonney, and the chemistry teacher, Karsten, who participated to explain the most difficult terms in Norwegian.

 

Sugar-hungry cancer cells

Arctic Pharma is exploiting a well-known biological fact regarding cancer cells, namely that they like sugar, which means they have a sweet tooth. This is called the Warburg effect, and, so far, nobody has used it in the treatment of cancer. Since this is such a characteristic aspect of cancer cells, it would make sense to think that this could be a viable starting point for treatment.

Arctic Pharma is one of the smaller companies in Oslo Cancer Cluster Incubator and is co-located with Ullern Upper Secondary School. Bonney has been permitted to use the school’s chemistry lab to test the chemical substance being developed to attack the Warburg effect.

The chemistry day at the company was organised to return the favour and to inspire the young chemistry students to keep studying chemistry at a university or university college.

 

 

Sign up to OCC newsletter

Transporting patients

Student Jørgen Amdim got to experience life as an orderly on his one-week placement at the Norwegian Radium Hospital.

 

Transporting patients in Norway’s biggest cancer hospital is strenuous both physically and psychologically. “But it’s really good,” said Jørgen Amdim, who is studying the program Healthcare, childhood and youth development at Ullern Upper Secondary School. His one-week placement was at the Transport Section at the Norwegian Radium Hospital. The work experience certainly gave him a taste for more.

Jørgen has previously worked in a nursing home, but he found the work a little tedious. He enjoyed being an orderly though and asked the school if there were any available placements.

An orderly is an attendant in a hospital who is responsible for, among other things, transporting patients, medical equipment and other essential materials. Jørgen spent one week as an orderly at the Radium Hospital and he loved it. He enjoyed it so much that he wants to work there again during the summer of 2019.

Knut Arve Kristiansen, the Head of the Transport Section, has worked at the Radium Hospital for 30 years and praised Jørgen:

“He was a perfect addition to our team, and we are very happy with him.”

 

80 km per week

Jørgen enjoys manual labour, which is great if you want to become an orderly. Wheeling around heavy medical equipment or patients in beds and wheel chairs is hard work. Knut Arve explained:

”As orderlies, we’re constantly on the go, and we could end up walking around 80 kilometres on hard floors during a week of work.

“It can be strenuous for the body, so we have to regularly do strength exercises to keep fit,” Knut Arve continued.

Knut Arve only had positive things to say about Jørgen and he hopes that Jørgen will want to return to the Transport Section for a summer job as an orderly.

“Jørgen is a social person and very well liked. This is important for patients when they are transported between examinations and the rooms they are staying in,” said Knut Arve.

Jørgen praises the work environment and especially the warm welcome he received from the other staff.

Jørgen has constantly been accompanied by a colleague from the section during his stay, because he is not allowed to do much on his own when on a placement. If he returns for a summer job, things will be different. Then he will have to work more independently and take responsibility if an emergency should occur while he is transporting a patient.

The orderlies are also responsible for transporting food and medication. To newcomers, the Radium Hospital can appear to be a huge labyrinth, especially outside the wards. The hospital is also currently being renovated, because a new hospital is being built. A sense of direction is therefore essential for anyone finding their way through the building.

 

A future in health

Jørgen does not necessarily want to become an orderly, but sees himself working in healthcare:

“I would really like to work in an emergency room – receiving ill and injured people at the hospital when they arrive in an ambulance. But I think working as an orderly is very exciting too, so I don’t want to exclude it as an option.”

Knut Arve says that a trade certificate is required to work as an orderly and that they currently offer placements for several apprentices in the section. Students need to study Healthcare, childhood and youth development during upper secondary school and then finish a two-year apprenticeship to obtain their trade certificate as an orderly.

”Workdays here are very varied and you meet many different people. It is really fun to talk to people and no two days are the same. I have really enjoyed it.” said Jørgen.

 

Attracting and developing the life science talents of the future is an essential goal for Oslo Cancer Cluster. One way to do that is to take students outside the traditional classroom setting and invite them to work placements and educational lectures. These collaborations between industry and academia give the students a unique insight into the specialist skills needed to become tomorrow’s researchers and entrepreneurs.

  • Find out more about Oslo Cancer Cluster’s school collaboration with Ullern Upper Secondary School.

 

Sign up to OCC newsletter

 

Three students experimenting with fruit flies in a lab.

Operation fruit flies

Fruit flies are not only annoying little insects that appear when bananas are overripe. They are also popular research tools for cancer researchers.

The four pupils Kalina Topalova Casadiego, Ida Hustad Andresen, Andreas Bernhus and Dina Düring got to experience how cancer researchers look at fruit flies during their work placement in January.

“Let’s turn on the gas, and then I’ll put some fruit flies on the pad under your microscope.” Speaking is cancer researcher Lene Malrød who, together with her colleague Nina Marie Pedersen, is responsible for four pupils from Ullern Secondary School on work placements.

“Gosh! They’re moving,” proclaims one of the pupils.

But not for long. Soon, all the fruit flies are anaesthetised and, eventually, dead; then the pupils are tasked with surgically removing the ovaries of the female flies. It is easier said than done, even with the help of microscopes to enhance the tiny flies. Especially when the operating tools are two tweezers.

Fruit flies are kept in two test tubes

The fruit flies are kept in test tubes.

 

An exciting placement

It is the third day of the pupils’ work placement at the Institute for Cancer Research, located next to the school. For four days at the end of January, they have learnt about cancer research and which methods researchers use in their daily work.

“The work placement is not like we imagined,” says Kalina and Ida.

“There’s a lot more manual work than I would have thought, and then you realise how important research is through what we do,” says Ida.

She is the only one who is specialising in biology in combination with with other science subjects, and she finds this very useful when working in the lab together with researchers. The other three have had to catch up on the reading, but they all agree that it is very exciting.

“Yesterday, we learnt a lot about CRISPR, which is a new method for cutting and splicing genes. Media gives you the impression that this is a highly precise tool, but the researchers here say that a lot can go wrong, and that it’s not at all as precise as you might think,” says Ida.

A student looks at fruit flies under a microscope

The students look at the fruit flies under a microscope.

 

From Western Blot to flies

A total of twelve pupils were picked out for this work placement. They have been chosen based on motivation and grades, and they all have a wish to study something related to medicine or science after they finish upper secondary school.

The twelve students are divided into three groups with completely different activities and get to learn a number of different research methods. The group consisting of Ida, Kalina, Andreas, and Dina, for instance, is the only group which will have a go in the fly lab.

“Am I really supposed to remove the ovaries? I don’t see how,” one of the pupils say, equally discouraged and excited.

Andreas, on the other hand, is in complete control. First, he has separated the males and the females with a paint brush. He has then used the tweezers to remove the heads from the females, punctured the bottom to remove the intestines, and finally found the ovaries in the abdomen.

Lene gathers all the different body parts for the pupils to look at through a different microscope. These fruit flies are in fact genetically manipulated to glow in the dark – they are fluorescent.

If you are wondering why researchers use fruit flies as part of their research, you can read more about it in this article from Forskning.no (the article is written in Norwegian).

“It is so much fun to be here, and we are really lucky to get this opportunity,” says Dina on her way from the fly lab to another lab to carry out another experiment.

 

The pupils on the work placement have uploaded many nice photos and videos on Ullern Secondary School’s Instagram account – visit their account to see more from the placement.

Audience at Cancer Crosslinks 2019

Top presentations from Cancer Crosslinks 2019

See them again or for the first time: videos from the Cancer Crosslinks 2019 presentations.

Cancer Crosslinks is Oslo Cancer Cluster’s annual, open conference for the Norwegian oncology community. It offers a full-day educational program featuring distinguished international and national experts presenting recent advances in precision oncology and cancer immunotherapy.

More than 300 participants joined Cancer Crosslinks on 17 January 2019 and enjoyed excellent talks and discussions presented by leading international oncologists and researchers and their Norwegian colleagues.

 

The speakers’ top topics

The speakers discussed new insights into sensitivity and resistance and features of the tumour microenvironment critical for the clinical course. They also discussed emerging tissue agnostic biomarkers, where «tissue agnostic” refers to the ability to develop therapies based upon biomarkers or other molecular targets to treat a disease. A biomarker is a measurable indicator of a biological state or condition.

Other topics were learnings from cancer molecular evolution studies, and how big data approaches are used to improve patient care. Together with an engaged audience, the presenters were really connecting the dots for improved patient care in precision oncology.


Professor Naiyer Rizvi
, Director of thoracic oncology and of immunotherapeutics for the division of haematology and oncology at Columbia University Medical Center, New York, gave the opening keynote in the form of a video presentation. He is an internationally recognized leader in the treatment of lung cancer and immunotherapy drug development.

In his presentation, titled: “Sensitivity and resistance to immuno-oncology: Biological insights and their translation into precision treatment”, Prof. Rizvi also addressed the question “What happens when the doctors expect the patient to respond to immunotherapy, but then the patient does not?”

WATCH PROF. RIZVI

Professor Rizvi

 

Dr. Aaron Goodman, MD, is a haematologist and medical oncologist specialized in treating a variety of blood cancers. He holds a position as Assistant Professor of Medicine at the Moores Cancer Center at UC San Diego Health in La Jolla, California.

During his talk, Dr. Goodman presented tumour mutational burden and other emerging tissue agnostic biomarkers for response to cancer immunotherapy and how to implement these into the clinic. He also spoke about his experience from the Rare Tumour Clinic in San Diego, where they perform a comprehensive molecular profiling for about 22-25% of cancer patients with rare tumours. The goal is to identify a matching therapy for each patient.

After his presentation, Dr. Goodman commented to Oslo Cancer Cluster:

“We started by doing data collections and help patients and learn at the same time. It is a benefit that we at least have the patient’s data and experience with that patient so that we can go forward and help the next patient.” Aaron Goodman

WATCH DR. GOODMAN

Dr Goodman

 

Dr. Randy F. Sweis is an Assistant Professor in the haematology/oncology section at the University of Chicago. He works with cancer immunology, developmental therapeutics and biomarkers, with a clinical interest in phase 1 clinical trials and genitourinary malignancies. His laboratory research involves the identification and targeting of tumour-intrinsic immunotherapy resistance pathways.

During Cancer Crosslinks, Dr. Sweis presented his work on immunophenotypes: “The T cell-inflamed tumour microenvironment as a biomarker and its clinical implications.”

WATCH DR. SWEIS

Dr. Sweis

 

Dr. Marco Gerlinger is a clinician scientist at the Center for Evolution and Cancer at the Institute of Cancer Research in London and a consultant Medical Oncologist in the GI Cancer Unit at Royal Marsden Hospital. He develops novel techniques to detect and track intra-tumour heterogeneity in solid tumours to define evolutionary plasticity and common evolutionary trajectories in cancers. Cancer cell plasticity is the ability of cancer cells to change their physiological characteristics.

Dr. Gerlinger shared the latest insights into cancer evolution and discussed the limits of predictability in precision cancer medicine. How can clinicians and researchers exploit important data on tumour development?

During his visit in Oslo, Dr. Gerlinger commented: “We have had fantastic discussions with an audience that is really well informed and brings up the challenges we are facing and the research we are doing.”

“This is the first time I have given a talk in Norway and obviously there is a lot going on here. I am already thinking about some collaborations, because there are some interesting advantages here through big tumour banks and cancer registries.” Dr. Marco Gerlinger

WATCH DR. GERLINGER

Dr Gerlinger

 

 

Professor Dr. med. Lars Bullinger is Professor of Hematology and Oncology and Medical Director of the Department of Hematology, Oncology and Tumor Immunology at Charité University Medicine Berlin.

He is a partner in the Innovative Medicines Initiative project HARMONY (Healthcare alliance for resourceful medicines offensive against neoplasms in haematology) aiming to use big data to deliver information that will help to improve the care of patients with haematologic cancers.

In his keynote speech he presented the “best of hematology from 2018” to the Cancer Crosslinks audience. He also addressed emerging therapeutic opportunities and the impact of big data for precision treatment in haematology.

WATCH PROF. DR. MED. LARS BULLINGER

Lars Bullinger

 

James Peach is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, UK. Prior to this role, he was the Managing Director at the main programme for Genomics England from 2013 to 2017. He presented his perspectives on the implementation of precision medicine in the UK and discussed the status, lessons learned and the way forward.

WATCH JAMES PEACH

James Peach


The expert panel
You can read more about how the Norwegian expert panel reacted to James Peach’s presentation and the state of precision medicine in Norway in the article below, also from Cancer Crosslinks 2019. The article contains a video of the panel debate.

Getting genomics into healthcare: look to the UK

 

Raphael Lømo, Foto: Fullscreen Visuals

Why a logistics company joined the cluster

Kuehne + Nagel joined Oslo Cancer Cluster last year. Why did a logistics company join a cluster dedicated to cancer treatment?

 

Kuehne + Nagel is one of the world’s leading logistics providers, and pharmaceuticals are certainly a category of product that requires special care when moved between locations.

This is an interview with Raphael Lømo, the National Manager for Pharma & Healthcare Development Logistics for Kuehne + Nagel in Norway.

 

“Why did you join a cluster dedicated to cancer treatment?”

“Being one of the leading logistics companies in the pharmaceutical and healthcare industry, we realized that a membership in Oslo Cancer Cluster is beneficial for both the other members and us. The members get access to an international good distribution practice (GDP)-compliant pharmaceutical logistics network and professional support within the pharmaceutical supply chain. At the same time, Kuehne + Nagel gets linked to the currently leading and possible future players in the oncology field, which will help us to increase our understanding and to proactively try to design solutions for the members in this industry. Members can focus on their core competences which is in the R&D field while we offer to take care of the distribution challenges, which is our core competence. Kuehne + Nagel’s membership linked our industries and completed your oncology value chain.”

We are also very interested in working with start-up companies which are supported by Oslo Cancer Cluster Incubator. It is inspiring to be involved in interesting and innovative projects and at the same time it helps us to keep the finger on the pulse of the pharmaceutical industry. It would not be the first time that we successfully accompanied a start-up by offering pharmaceutical specific supply chain counselling and consulting services.”

Last but not least, it feels really good to contribute to improve the lives of often very sick cancer patients, which we have been doing for many years in the prostate cancer field. We can identify ourselves with your vision to help patients by accelerating the development of cancer treatments.” Raphael Lømo

 

“What does logistics innovation have to do with cancer medicine?”

“Well, based on our experience, cancer medicines are often extremely urgent, temperature sensitive and sometimes even classified as dangerous goods shipments, e.g. radioactive. This combination makes it quite challenging to design safe solutions and both visibility, risk control, and reliable handling are the most important factors to protect the integrity of cancer medicines. We constantly work on innovative solutions to improve the level of control of these factors, such as new IT systems and Internet of Things (IoT) real-time tracking devices. ”

Part of Kuehne + Nagel’s solution for safe logistics. Photo: Kuehne + Nagel

Part of Kuehne + Nagel’s solution for safe logistics. Photo: Kuehne + Nagel

 

“I understand that there are some “pharma shipment enemies” in the logistics industry: Temperature, time, handling and dangerous goods. What is your solution to these challenges in shipping pharmaceuticals?”

“Most importantly, you need a reliable logistics partner which understands the full scope of GDP and the challenges of shipping pharmaceuticals globally. Due to our close relationship to all major airlines, ground handlings agents, and trucking companies, in extreme cases we can customize solutions for very sensitive shipments. Such solutions will be complimented with state of the art tracking technology which transmits both location and other relevant data in real-time to KN Login, our data and IT solution that provides visibility and control of your shipment. There you can follow your shipments 24/7/365. Moreover, a team of trained pharmaceutical logistics specialists can monitor your shipment and provide status updates if required. In case of any deviation of the shipment plan, this global service desk can proactively take action to get your shipment back on track. Our award winning KN PharmaChain solution is the basis for every challenge in the pharmaceutical supply chain industry.”

“We have a vast database that includes the most important information and capabilities of major airlines and ground handling agents at the most important airports around the world. This is a unique database and provides very valuable information in order to plan shipments and conduct Lane Risk Assessments. As an example, with one click we know the capacity for storing pharmaceuticals at certain temperature ranges at warehouses of different airlines and airports all over the world. This tool helps us to analyses shipment processes and mitigate potential risks.”

 

“Do you have any advice to companies looking to send fragile drugs or other pharmaceuticals?” 

“Look for a reliable and experienced logistics partner with a global “owned” network which fully understands the requirements of shipping fragile pharmaceuticals but also follows the Good Distribution Practice (GDP), not only in Norway but globally. We highly recommend to conduct a GDP audit before working with a potential logistics partner. Norwegian logistics companies are not audited by the Norwegian Medicines Authorities and often do not understand and follow the full scope of the GDP guideline. Keep in mind that it is in the responsibility of the pharmaceutical company and not the logistics company that the products are transported under GDP compliant conditions.”

 

About the company

Kuehne+Nagel is listed on the Swiss stock exchange, but the majority is still owned by Mr. Klaus-Michael Kuehne.

Since 1890, when the business was founded in Bremen, Germany, by August Kuehne and Friedrich Nagel, Kuehne + Nagel has grown into one of the world’s leading logistics providers.

Today, the Kuehne + Nagel Group has some 1,300 offices in over 100 countries, with around 79,000 employees.

The company specialises in seafreight, airfreight, contract logistics and overland businesses, with a clear focus on high value-added segments such as IT-based integrated logistics solutions.

KN PharmaChain is Kuehne+Nagel’s supply chain innovation for pharmaceutical and healthcare shipments.

Discussing health care at Cancer Crosslinks 2019

Getting genomics into healthcare: look to the UK

During Cancer Crosslinks 2019, one thing was crystal clear: there is a need to include broader genomic testing into treatments for cancer patients in Norway.

“We are lacking behind here in Norway!”

Professor Ola Myklebost, from the Department of Clinical Science at the University of Bergen, was definitely ready for action in the panel debate at Cancer Crosslinks 2019, fittingly named “Call for Action”.

The panel and the audience of about 300 people had just listened to the talk given by James Peach. He is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, and prior to this, he was the Managing Director at the main programme for Genomics England from 2013 to 2017 and led the UK’s Stratified Medicines Program.

Peach told the audience how they have been implementing precision medicine into the public health care system (NHS) in the UK, using genomic testing, during the last decade. He demonstrated how the industry is part of this public endeavour, how political support and investment contributed to industry development, and how they addressed complex issues like sharing health data and using artificial intelligence.

It started with very little.

“In 2010, we had no structure”, Peach told the audience.

 

James Peach presenting at Cancer Crosslinks 2019

Sequencing 100,000 genomes

Thanks to all the British cancer patients who consented to Genomics England using their data, and a lot of common public-private efforts, Genomics England has now reached its goal of sequencing 100,000 whole genomes from NHS patients, according to their webpage. It takes a lot to accomplish this number, but luckily there are things to learn from the UK effort.

“Circulating tumour DNA testing is absolutely necessary”, Peach said from the podium.

The Life Science Sector deal from the British government outlines this public-private effort. It shows how significant government commitment, funding and strategic actions triggered investment and initiatives from the life science industry. You can read the entire document at the official webpage of the British Department of Business, Energy and Industrial Strategy, following this link.

James Peach visited Norway earlier as a speaker at Cancer Crosslinks 2012. Returning now, he was truly surprised about the current state of precision medicine in Norway.

 

Concerned about Norway

In an interview with Oslo Cancer Cluster, James Peach shared a concern as an answer to the question “What impressions are you left with after this conference?” 

“It has left me quite concerned about the state of precision medicine in Norway. I thought you would be looking forward to the things you could do, but it turns out that there are actually some things that you should have done already.”

“Like what things?” 

“Like universal application of a cancer panel test that is commercially feasible and deals around getting your data shared appropriately.”

Do you think we can have a Genomics Norway?”

“Of course. It is probably about combining two things. One is that you got to get the basic stuff right. People need to have access to gene tests for their clinical care. Luckily the people here are a group of experts who are all connected to each other and who understand the system. It is not a massive system. I think there is a real chance to choose an area where Norway could do it exceptionally well. What that area is, is for you to choose.”

 

Concerns in Norway

Back in the panel discussion, Hege G. Russnes, Pathologist, Senior Consultant and Researcher at Oslo University Hospital, was getting involved:

“We need more information to help clinicians make therapy decisions. (…) Norway has no plan or recommendation for multi gene tests.”

Christian Kersten, Senior Consultant at the Center for Cancer Treatment at Sørlandet Hospital, agreed.

“I’m the clinician, I treat patients, patients die because of metastasis. I have been treating cancer patients for 20 years now and I feel it increasingly difficult to keep the trust of the patient.”

“If you ask the patients, they will sign the papers with consent of sharing data in 99% of the cases”, Myklebost added.

“We are only 5 million, we do not have to reinvent the wheel. Erna Solberg should invite James Peach for a cup of tea”, Christian Kersten said, finishing up the panel talk.

 

The entire panel debate is available to watch at the webcast webpage:

WATCH THE PANEL DEBATE

 

More on UK Medicines Discovery Catapult 

Did this brief article make you interested in the work that James Peach and UK Medicines Discovery Catapult does? In this short video, Peach explains the challenges with access to health data for drug discovery and how to overcome them:

 

More from Cancer Crosslinks 

We have more from Cancer Crosslinks 2019 coming up. Stay tuned and subscribe to our newsletter, and you will not miss videos of the talks and interviews with the other distinguished speakers at the conference.

Participants discussing at NOME mentor network.

Why a Nordic mentor network is a good idea 

The Nordic Mentor Network of Entrepreneurship (NOME) is the first pan-Nordic mentor network for lifescience start-ups. Why is it a good idea for start-ups working in cancer?

 

Bjørn Klem has an answer. He is the General Manager of Oslo Cancer Cluster Incubator and point of contact for start-ups within the cancer field in Norway.

“Start-ups working in cancer need to access commercialisation expertise and investor networks. When looking for this, it is an advantage to seek in other Nordic countries where investors are experienced with cancer and biotech in general. Participating in NOME will also take you into their global network.” Bjørn Klem

 

Connecting with a mentor team

NOME is based on the mentoring principals of MIT’s Venture Mentoring Service. The fundamental principle is to connect first time entrepreneurs with a team of three to four experienced and skilled mentors to help them reach their goals and technology milestones. 

From Boston to the Nordics, this is the first mentor network within life sciences that spans across all the Nordic countries. 

In Norway, Oslo Cancer Cluster Incubator og the health incubator Aleap are coordinating start-ups with suitable mentors.

“Team mentorship, where mentees have a group of mentors, rather than single one-on-one mentorship, encourages more diverse thinking, cross-disciplinary approaches to ideas and problem solving, and it allows the access to professionals from different fields.”  NOME Magazine Issue 1 2018

 

Norwegian mentors and start-ups

One of the Norwegian NOME mentors is Kari Grønås. She has extensive experience in drug development and commercialisation within the pharmaceutical industry.

You can listen to her (in Norwegian) in this video that was made by Oslo Cancer Cluster Incubator as the programme was just starting in Norway in 2017.

One of the Oslo Cancer Cluster members that have taken advantage of the NOME opportunity and mentors, is Nacamed.

Nacamed is a Norwegian spin-off company of Dynatec AS. The Nacamed technology is based on 10 years of research on silicon done by Dynatec engineering. According to the company webpage, this enables a production that can tailor particles with the desired physical attributes. With this, Nacamed aims to create a new generation of treatment methods.

 

Best in class-network

This video, made by Accelerate, explains the concept of NOME and the value it adds to the Nordic startup ecosystem.

The mentors are volunteering to share their knowledge and experience with new entrepreneurs within fields such as digital health, immuno-oncology and AI in healthcare. NOME mentors can give unbiased advice, provide strategic guidance, open their network and possible collaboration partners, as well as assisting in reaching key milestones.

The start-ups have to be best in class too. The local NOME partners evaluate the companies on the novelty of the science or technology, their high commercial potential as well as the strength and commitment of the founding team. Furthermore, strong IP or alternative protection strategies, market differentiation, and the impact NOME potentially can have on the company’s development are also taken into consideration.

Participation is free of charge and funded by the Novo Nordisk Foundation.

Infographic from NOME magazine.

Source: The NOME Magazine, Issue 01, 2018

 

20 start-ups since 2016

Since 2016, 20 start-ups have joined NOME and of these two have graduated from the program. Graduation usually means the start-up has successfully raised funds for the coming few years and has engaged a formal board and therefore has less need for the NOME mentors.

The mentors either move on to work with other emerging companies or have been so excited about the potential of the company they have been working with that they have taken a seat on the board.

By the end of 2018, NOME had 50 mentors and 18 enrolled start-ups.

 

Mentors in immuno-oncology

In the NOME Magazine first edition, released in October, Carl Borrebaeck, professor at Department of Immuno-technology at Lund University in Sweden, is interviewed about his field of expertise, immuno-oncology and creating companies from his research. Borrebaeck is a founding mentor in NOME and has been part of the network for the past two years. 

“People tend to think, that innovation just happens and that it will reach patients without any commercial drive. That is simply untrue.” Prof. Carl Borrebaeck 

He continues to explain what is really needed to make health innovations happen:

“A combination of companies and academia is needed. Big pharma is always looking for the newest discoveries and ways they can collaborate in order to stay at the forefront of innovative research. The Nordics are highly innovative and they have a strong reputation globally. However, there are too few big pharma companies commercializing the science at the very early stages. This is often a major challenge for emerging companies who then have to seek funding not only in the Nordics but across Europe and the US to cover this funding gap.”

 

Mentors in artificial intelligence

NOME has mentors in several interesting life science fields. Lars Staal Wegner, the CEO of Evaxion Biotech, is another mentor. He started a company dedicated to using artificial intelligence, supercomputers, and big data to fight cancer and infectious diseases. In the NOME Magazine Wegner says: 

“It is no longer the pharma industry or the companies producing the off-the-shelf drugs. It is the ones who own the data and know how to convert it to effect, the cloud-based giants that are half life science half tech. This is maybe 30-40 years into the future, but it is important already now to know that the tech evolution is not linear. It is exponential. We have reached an inflection point in tech. The industry doesn’t have five or ten years to toe the line. It is exploding.” 

Artificial intelligence and machine learning are expected to have an unprecedented impact on how drugs are developed, their cost, and time to market, according to Wegner. 

 

Nordic partnership

NOME is operated by Accelerace and funded by the Novo Nordisk Foundation. The initiative is represented in the Nordic region through partnerships in Sweden, Norway and Finland. In Norway, Oslo Cancer Cluster Incubator og the health incubator Aleap are coordinating start-ups with suitable mentors.

In the US, the California Life Sciences Institute (CLSI) is a new partner for NOME. In fact it is too new to have entered the overview below. CLSI is a non-profit organization which supports entrepreneurship, STEM education and workforce development for the life science industry in California. It is located in the San Francisco Bay Area.

Infographic from NOME magazine.

Source: The NOME Magazine, Issue 01, 2018

Presenter at Cancer Crosslinks 2019.

Cancer Crosslinks LIVE streaming

Today, Thursday 17 January, we broadcast LIVE from our conference Cancer Crosslinks at Oslo Cancer Cluster Innovation Park.

Please join us and hear from a distinguished panel of international and Norwegian experts as they discuss the Next Wave of Precision Oncology, share new perspectives, and address the challenges and opportunities ahead. The subtitle of this year’s 11th Cancer Crosslinks is “Next Wave Precision Oncology – Connecting the Dots for Improved Patient Care”.

The broadcast starts at 9 AM and last until the conference ends at about 4 PM. Please follow the link to watch LIVE:

LIVESTREAM HERE

 

If you would like to know more about the international speakers at Cancer Crosslinks 2019, please read this article.

Researcher testing lab sample.

New research: 3D structure tumors in immunotherapy

New work from cancer researchers at the Department of Cellular Therapy could help to streamline the development of exciting new immunotherapy approaches for treating cancer.

Cancer treatments that aim to switch on a patient’s immune system to kill tumor cells – so-called immunotherapy approaches – have received much attention and encouraging results in recent years. Now, the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital has devised a new experimental approach that could improve early stages of the immunotherapy development pipeline.

The unit is present in Oslo Cancer Cluster Incubator with a translational research lab, led by Drs. Else Marit Inderberg and Sébastien Wälchli.

 

Researchers in laboratory.

Dr. Sébastien Wälchli and colleagues in the translational research lab in Oslo Cancer Cluster Incubator. Photo: Christopher Olssøn

 

CAR T cells drive new successes

Our immune systems are generally very good at recognizing foreign infectious agents and disposing of them appropriately. However, although our immune systems are capable of recognizing tumors as a threat, cancer cells have adapted mechanisms that enable them to evade the immune response. Immunotherapy is the name given to a range of different approaches that aim to overcome this problem by improving the immune system’s ability to target cancer cells.

One relatively new example of an immunotherapy approach comes from CAR T cells. These are produced by isolating specific cells of the immune system (T cells) from a cancer patient and modifying them so that they become more effective at recognizing and killing cancer cells. The modified T cells are then placed back into the patient so that they can ‘home in’ on the tumor and kill the cancer cells.

Read about related research: T-cells and the Nobel Price

 

Difficult for solid cancers

Current models for testing new CAR T cells aren’t always optimal. Although CAR T cells have shown encouraging results in treating some cancers, particularly the blood cancers leukemia and lymphoma, the development of CAR T cells for non-blood, or ‘solid’, cancers has been more difficult.

In part, this is due to the fact that tumor models currently used in early stages of testing involve two-dimensional monolayers of cancer cells, which do not reflect the complex three-dimensional structure and organization of solid tumors found in patients.

Consequently, CAR T cells that show encouraging results using these two-dimensional models often produce less effective results at later stages of the development pipeline, meaning time, effort and resources are wasted.

 

3D tumor spheroids

To improve the early stages of testing new CAR T cells, Dr. Wälchli’s group has developed a new approach that enables researchers to grow three-dimensional cancer cell structures, or ‘spheroids’, in the lab, and to test the effect that CAR T cells have on killing off these spheroids.

Compared to current two-dimensional methods, the spheroids are more similar in complexity and structure to tumors found in patients.

In a recent publication in the Journal of Visualized Experiments, this group demonstrated for the first time that their spheroid approach has the potential to provide a useful new tool for developing CAR T cells.

They generated spheroids using colorectal cancer cells – a type of cancer for which there is currently no effective CAR T cell therapy available. These cancer cells were modified so that they possessed a molecule on their cell surface called CD19, which is known to be recognized by certain CAR T cells. The researchers then incubated these spheroids with CD19-targeting CAR T cells and used advanced live imaging techniques to track the effect on cancer spheroids.

To help other research groups who would like to start using the spheroid technique, Dr. Wälchli’s publication is accompanied by this video which introduces the approach and provides a basic overview of how it works. The Journal of Visualized Experiments requires a subscription to see the entire video. You can also read a PDF of the article “A Spheroid Killing Assay by CAR T Cells” without a subscription.

 

Successful approach

As expected, shortly after adding CAR T cells, the researchers could detect that spheroids were shrinking due to cancer cell death, proving that their approach successfully measures CAR T cell-induced tumor clearance in a quantitative manner.

Discussing the work, Dr. Wälchli says, “We believe this method can help to answer key questions about using 3D structure tumors as a suitable alternative for testing new immunotherapy approaches.”

The approach now opens the door for testing a range of different target molecules in combination with new CAR T cells targeting those molecules.

 

Fast, affordable and straightforward

Dr. Wälchli believes many researchers could benefit from the spheroid technique. He continues,

“A major advantage to our approach is that it is fast, affordable and straightforward, meaning any research group with the right equipment can test the effect of their immunotherapy on 3D tumors before moving to animal models”.

International speakers at Cancer Crosslinks 2019

International speakers at Cancer Crosslinks

How can research help implement the next wave of precision oncology for patients? Meet the experts behind the research.

 

These leading international experts are part of the programme at Oslo Cancer Cluster Innovation Park, 17 January.
Not signed up for the 11thCancer Crosslinks yet? Join in here!

 

Professor Naiyer Rizvi is an internationally recognized leader in the treatment of lung cancer and immunotherapy drug development. He is the director of both thoracic oncology and of immunotherapeutics for the division of haematology and oncology at Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, USA.

Prior to joining Columbia University Medical Center, his clinical research at Memorial Sloan Kettering Cancer played a significant role in the FDA approval path of a new class of immunotherapies, called immune checkpoint inhibitors, for melanoma and lung cancer.

Rizvi studies mechanisms of sensitivity and resistance to immunotherapy. Through genetic testing of tumours, he has been able to improve the understanding of why immune checkpoint inhibitors work in certain patients.

Rizvi is also studying why certain cancers do not respond to immune checkpoint inhibitors. This way we can find better ways to harness the immune system to attack cancer cells.

He oversees phase 1 immunotherapy research in solid tumours at Columbia University Medical Center and is conducting key clinical studies of novel immunotherapy drugs and immunotherapy combinations to help more patients in the fight against cancer.

Professor Naiyer Rizvi

During Cancer Crosslinks, Professor Rizvi will give the opening keynote speech titled: “Sensitivity and resistance to immuno-oncology: Biological insights and their translation into precision treatment”.

 

Dr. Aaron Goodman, MD, is a haematologist and medical oncologist specialized in treating a variety of blood cancers, including acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL) and multiple myeloma. He holds a position as Assistant Professor of Medicine at the Moores Cancer Center at UC San Diego Health in La Jolla, California.

Dr. Goodman performs stem cell transplants for cancer treatment. He also treats people with rare haematologic disorders using experimental therapeutics.

His research interests include immunotherapy and cellular therapy treatment for haematologic malignancies and identifying biomarkers for response to immunotherapy.

Dr. Aaron Goodman

During Cancer Crosslinks, Dr. Aaron Goodman will present and discuss the clinical aspects of tumour mutational burden and other tissue agnostic biomarkers for cancer immunotherapy.

 

Dr. Randy F. Sweis is an Assistant Professor in the haematology/oncology section at the University of Chicago. He works with cancer immunology, developmental therapeutics and biomarkers, with a clinical interest in phase 1 clinical trials and genitourinary malignancies. His laboratory research involves the identification and targeting of tumour-intrinsic immunotherapy resistance pathways.

Dr. Sweis is the recipient of numerous awards. In 2017, he was elected to co-lead TimIOs, an international project aimed at tackling tumor heterogeneity to enhance immunotherapy responses supported by the Society for Immunotherapy of Cancer (SITC).

Dr. Randy F. Sweis

During Cancer Crosslinks, Dr. Randy F. Sweis presents his work on immunophenotypes: The T cell-inflamed tumour microenvironment as a biomarker and its clinical implications.

 

Dr. Marco Gerlinger is a clinician scientist at the Center for Evolution and Cancer at the Institute of Cancer Research in London. He develops novel techniques to detect and track intra-tumour heterogeneity in solid tumours to define evolutionary plasticity and common evolutionary trajectories in cancers.

Dr. Gerlinger uses genomics technologies for treatment personalization. He treats patients with gastrointestinal cancers at The Royal Marsden NHS Foundation Trust.

One of the key aims of his work is to develop strategies to improve predictive and prognostic biomarker performance and the efficacy of drug therapy in heterogeneous cancers.

He contributes to The Darwin Cancer Blog– on mutational evolution of cancer.

Dr. Marco Gerlinger

During Cancer Crosslinks, Dr. Marco Gerlinger will share the latest insights into cancer evolution and discuss the limits of predictability in precision cancer medicine. 

 

Professor Dr. med. Lars Bullinger is Professor of Hematology and Oncology and Medical Director of the Department of Hematology, Oncology and Tumor Immunology at Charité University Medicine Berlin.

He is a partner in the Innovative Medicines Initiative project HARMONY (Healthcare alliance for resourceful medicines offensive against neoplasms in haematology) aiming to use big data to deliver information that will help to improve the care of patients with haematologic cancers.

In this video from June, you get a preview of the subject he will talk about at Cancer Crosslinks: 

During Cancer Crosslinks, Dr. Lars Bullinger will give an international keynote speech about haematological cancers, emerging treatment opportunities and the impact of big data. 

 

James Peach is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, UK. Prior to this role, he was the Managing Director at the main programme for Genomics England from 2013 to 2017.

Peach is a precision medicine strategist and operational leader with investment, commercial and public sector experience across cancer, rare diseases, and genetics. James Peach gave the opening keynote at Cancer Crosslinks 2012 – at that time as the Director for Stratified Medicine at Cancer Research UK, London.

In this video James Peach explains the challenges with access to health data for drug discovery and how to overcome them:

During Cancer Crosslinks, James Peach will present his perspectives on the implementation of precision medicine in the UK and discuss the status, lessons learned and the way forward. 

 

Not signed up for Cancer Crosslinks yet? Join in here!

 

 

Photo of Richard Stratford and Trevor Clancy in OncoImmunity.

Machine-learning for immunotherapy

A prestigious EU-grant will advance OncoImmunity’s machine-learning approach to develop personalized cancer immunotherapy.

The bioinformatics company OncoImmunity AS is empowering cancer immunotherapy with artificial intelligence. They use innovative software solutions to guide the discovery of neoantigen-based personalized immunotherapies and biomarkers. What does this really mean?

It means that the software they have developed helps to identify neoantigens, also known as immunogenic mutations, in a patient’s cancer cells. Cancer cells deceive the immune system by looking like healthy cells. But they still express cancer-specific markers, known as neoantigens. (See facts box for explanation.)

 

Enables personalized medicine

The interesting part about neoantigens, is that every patient’s tumor expresses a unique combination. This enables truly personalized medicine to be applied, if the correct neoantigens are selected from the thousands of possible candidates in the genome of a tumor. Researchers using this technology can now solve this “needle in the haystack” challenge by analyzing a tumor genome to figure out the right cocktail of neoantigens, for each individual patient, and design a specific vaccine or cell therapy uniquely designed just for them.

Such personalized immunotherapy can for instance boost the immune system’s response by making the immune system better able to recognize and target the patient’s unique cancer cells.

 

Faster bespoke treatment

OncoImmunity’s flagship software, the ImmuneProfiler™, is a unique machine learning solution that makes it easier to instantaneously see and accurately select which neoantigens will be responsive in each patient.

It thereby helps biotech companies design neoantigen-based personalized cancer vaccines and cell therapies and enables bespoke treatments to be developed faster. Additionally, the technology allows clinical researchers to select which patients will likely respond to the wide range of cancer immunotherapies currently under development in the field.

In that sense, the OncoImmunity-approach to cancer treatment is exactly in line with Oslo Cancer Cluster’s main goal: to speed up the development of new cancer treatments for the benefit of cancer patients.

 

Prestigious EU-grant

Horizon 2020’s SME Instrument is a grant that is tailored for small and medium sized enterprises (SMEs). It targets innovative businesses with international ambitions — such as OncoImmunity.

The SME Instrument has two application phases. Phase one awards the winning company 50 000 Euros based on an innovative project idea. Phase two is the actual implementation of the main project. In this phase, the applicant may receive between 1 and 2,5 million Euros.

Oncoimmunity won the phase one project last year. Then, the founders of the bioinformatics company were happy about the opportunity to refine and optimize their machine-learning framework. Their goal has always been to facilitate personalized cancer vaccine design.

 

Fantastic funding

Now, they have won a considerably larger grant of 2,2 Million Euros that they are going to use to fund a project titled Machine-learning Engine for the Design of personalized Vaccines in Cancer (MEDIVAC).

The SME Instrument grant provides OncoImmunity the opportunity to further customise their machine-learning framework, called the ImmuneProfiler™,for specific vaccine platforms, facilitating the design of safer and more efficacious personalised cancer vaccines.

— We applied for the SME instrument grant as it represents a fantastic funding vehicle for cutting edge, innovative projects with huge commercial potential. The call matched our ambition to position OncoImmunity as the leading supplier of neoantigen identification software in the personalised cancer vaccine market, says Dr. Richard Stratford, Chief Executive Officer and Co-founder of OncoImmunity.

— This opportunity will also help us establish the requisite quality assurance systems, certifications, and clinical validation with our partners, to get our software approved as a medical device in both the EU and US, says Dr. Trevor Clancy, Chief Scientific Officer and Co-founder of OncoImmunity.

 

SMEs can apply

The SME Instrument is looking for high growth- and highly innovative SMEs with global ambitions. They are developing innovative technologies that have the potential to disrupt the established value networks and existing markets.

Companies applying for the SME Instrument must meet the requirements set by the programme. Please see the SME Instrument website for more information in English or the SME Instrument webpage of Innovation Norway for more information in Norwegian.

Curious about which companies have received the SME Instrument so far? Have look at this database with an overview of all the grant receiving companies in Europe.

Want to know which Norwegian companies received grants from The European Unions research programme Horizon2020 in 2018? Read this article from Innovation Norway (in Norwegian).

Oslo Cancer Cluster  supports members via the EU Advisor Program in collaboration with Innovayt, making them aware of relevant EU- and H2020 funding opportunities and helping them to identify the right calls for their development phase and goals. Oslo Cancer Cluster also assists with partner searches using national and international networks and provides direct support during the grant writing and submission process.

 

The start-up company Kongsberg Beam Technology wants to direct the precision technology from smart missiles to hit tumours in the human body. — We want to use Norwegian spearhead technology to combat cancer, Per Håvard Kleven said during his pitch at the DNB Nordic Healthcare Conference 11 December 2018. 

Industrial precision against cancer 

Kongsberg Beam Technology wants to direct the precision technology from advanced industrial control systems to hit tumors in the human body.

— We want to use Norwegian spearhead technology to combat cancer, Per Håvard Kleven said from the stage as he pitched the idea of his start-up at the DNB Nordic Healthcare Conference 2018.

He is the founder of the start-up company Kongsberg Beam Technology AS. As he wrote the patent application for the technology behind this start-up, he was far from the only one to explore this field. Nevertheless, the patent was granted earlier this year (2018). He was ahead of companies like Siemens and other giants.

— There is a lot of research going into radiation and all of it is focusing on increased precision, but no one is attacking the problem as fundamentally as we are.

 

Precision proton radiation

The method in question is proton radiation. This kind of radiation is directed towards a tumour and radiates far more precisely than x-ray radiation, the standard radiotherapy that hospitals currently use to treat cancer.

Proton radiation requires special machines. There are currently only 85 of these machines, known as proton  therapy synchrocyclotrones, in the world. Norway awaits its first proton synchrocyclotron in a couple of years. The existence of such a machine in Norway is a precondition for the business plan of Kongsberg Beam Technology.

This is one of the few proton therapy machines in use in the world today. It is the proton therapy synchrocyclotron in the Jacobson Building at the Mayo Clinic in Rochester, Minnesota, USA. Photo: Jonathunder/ Wikimedia Commons

The ambition of Kleven and his new board of directors is to let proton radiation follow the movements of the tumour, meaning the smallest movements of the patient as she breathes. This does not seem like much, but there is actually a lot of movement in for instance the lungs. And with vital organs closely linked to the lungs, such as the heart and the spine, it is extremely important to have a precise beam.

There is in deed a need for more precision in radiation therapy.

— The radiation that the hospitals use to treat cancer today is not precise. Healthy tissue is always damaged with radiation and this is a problem which we are attacking.

 

Norwegian spearhead technology

The system in question is to figure out exactly where the tumour is situated in the body, how it moves and how much radioactive energy it takes to radiate it properly.

He wants to take the principals and methods currently used in precision industries such as defence, space and oil- and gas, and apply these to radiation in cancer treatments. The aim is to obtain industrial precision to avoid damaging any healthy tissue.

 

Aims to develop a solution

The mechanical part of the system makes it possible to do online tracking of the cancer and synchronise the beam so that it always hits exactly on the cancer. This might not sound like it should be too difficult, but indeed it is.

— We cannot control a beam of particles with the agility and precision that is required today, but these functions will develop. We aim to develop them!

– In five years, when our project makes proton radiation reach its potential for industrial precision, my assumption is that proton radiation will take a much higher share of radio therapy in cancer treatment and that the number of proton centres will increase steeply.

According to Kleven, the testing will start soon, followed by prototyping and further testing and qualification. The goal is to have a working system by mid 2024. Kleven assumes that the future product can be installed as an add-on to exciting proton therapy synchrocyclotrones.

— Testing and remaining R&D will start as soon as the needed capital is in place, he said.

 

Needs more funding

The financing for the start-up so far is covered by Buskerud county, Innovation Norway, Oslofjordfondet and the Research Council of Norway. Kongsberg Beam Technology needs 93 million NOK initially, to test, develop and qualify the technology. 60 million of this sum should come from investors.

Kleven shows an estimate of a one billion NOK turn-over after a few years, in a profitable company with growth possibilities.

The new business is going to be established in Kongsberg in Norway, a town that is already well established as a hub for spin offs of the Norwegian defence industry. Kleven himself has a lifetime of experience from this sector, since he started to work in Kongsberg Weapons Factory (Kongsberg Våpenfabrikk) in 1975.

Surgery, squash and anaesthesia

Hannah (18) wants to become a doctor. After two days job shadowing doctors and nurses at the Norwegian Radium Hospital, she is even more certain that this is what she wants to do.

If your dream is to become a doctor, it may be a good idea to gain some insight into what the job actually involves before embarking on a long education. But job shadowing a doctor is usually only a possibility if you’re already a medical student.

Truls Ryder is a senior consultant and surgeon at the Norwegian Radium Hospital. He decided to do something about this, and over three days, one theme day that you can read more about here and two days of job shadowing, 18 pupils had the opportunity to experience surgery, morning staff meetings and patient consultations with the best cancer specialists and nurses in Norway.

Hannah Fiksdal is one of these pupils. And I, Elisabeth the journalist, shadowed her on the first of her two days at the Norwegian Radium Hospital. It was a day that neither of us will forget. A day that left Hannah with an even stronger desire to become a doctor.

‘I am incredibly grateful for the chance to shadow two different doctors, and to Truls Ryder for taking the initiative to allow pupils from Ullern to come to the Norwegian Radium Hospital. It gives us some idea of what may interests us before we apply for higher education in the spring. Having had a taste of two different aspects of medicine, I think that surgery and anaesthesiology were probably the things that I found most exciting.’

Hannah Fiksdal.

Hannah Fiksdal starts the day early at the hospital. Photo. Elisabeth Kirkeng Andersen

Tuesday 7 November

07:15 – the Norwegian Radium Hospital, basement level 2 – the corridor outside room AU 230
Sixteen excited pupils, 14 from the natural science and mathematics programme who will be shadowing doctors and two from the healthcare programme who will be shadowing nurses, are standing in a corridor two floors below the main entrance to the Norwegian Radium Hospital dressed in white hospital clothes.

Truls Ryder, senior consultant and prime mover behind the job shadowing scheme, is also here. He quickly reads out where each pupil will be spending the day, and sets of at a brisk pace with everyone in tow.

This is an indication of what is to come.

We go five floors up and then a couple of floors down via the back stairs. On the way, pupils peel off from the group to join other senior consultants and professors who they will be job shadowing today.

Hannah and Tristan are handed over to the anaesthetists at the anaesthesiology department. The department has nine senior consultants, one professor working 50% of a full-time position, and three specialist registrars.

07:34
The morning staff meeting has already started when Hannah and Tristan arrive. Eight doctors and nurses go through the list of patients who will need anaesthesia or pain relief today. Some will undergo surgery in the hospital’s central unit, and some require their services in other parts of the hospital, such as the radiotherapy department.

It is difficult to understand the discussions and information exchanged between the doctors and nurses. The jargon is technical, professional and precise. I wonder how much Hannah and Tristan understand? But it is clear that we have a full day ahead, and that many of the patients are seriously ill with cancer. Some are young, and some patients’ cancer has returned after treatment. Despite the difficult subject, the tone of the meeting is upbeat and friendly. It will remain so for the rest of the day.

08:00
Tristan and Hannah meet their mentors for the day. Tristan will join Senior Consultant Hege for a complicated operation that may take more than ten hours. The patient has a form of cancer that means that the surgeons have to go into the skeleton, among other things.

Hannah will be joining Senior Consultant Anne. Anne has several operations on her schedule today, and Hannah and I will be allowed to tag along and see how she works. Anne’s first patient is having an epidural and then a general anaesthetic. This is also a complicated operation.

Anne and Hege both tell us to be prepared that what we experience may make a strong impression on us and that it is natural to feel unwell. They both share stories about themselves and about medical students who have fainted both during and after visits to the operating theatre.

‘Let us know if you fell unwell,’ is their mantra, ‘and we will help you.’ I think back to the countless shifts I worked at nursing homes during my student days, and hope that they have prepared me for this. But what about young people of 18 and 19 who want to go on to work here?

08:07
Anne gives us green scrubs and a purple cap. We change in her office while she explains that her job can be compared to a pilot flying a plane. There is a lot to do when the operation starts until the patient is under anaesthesia, and then there is a calmer period of observation of the patient, often done by her colleagues, and then she goes back to full focus when the patient wakes up.

We get changed quickly.

8:10
Surgery starts early at the Norwegian Radium Hospital, and the patient arrives at the operating theatre at the same time as we do. Anne explains who Hannah and I are and why we are here. In addition to the patient, there are already five people working here.

Anne jokes and talks to the patient, who she has already met several times before. She explains that she will first be administering a local anaesthetic to the back before putting in an epidural, a form of pain relief given as an injection in the back. After that, a cannula will be inserted into a vein in the patient’s lower arm. When the patient is completely asleep, Anne will place a catheter in the neck that will be used to administer anaesthetics, pain relief, salts and anything else the body may need during an operation.

Anne involves Hannah in the work and explains what she is doing while she works, and she also explains to the patient.

‘It was also really nice to see how caring the doctors and nurses were and how they reassured the patients before surgery. They were very good at creating a pleasant atmosphere to make the patients feel safe despite the seriousness of the situation.’

Hannah Fiksdal.

08:41
Operating theatre 4 is a big, light room, and one of the long walls has big windows with a view of Mærradalsbekken stream and the surrounding forest. The river and the walking path meander side by side. But today, we can hardly see any of this through the darkness and fog.

Anne keeps an eye on the pulse and heart monitor that the patient is connected to, while the theatre nurse is preparing the instruments that the surgeons might need during the operation.

The patient is about to be put under full anaesthesia. Anne and her colleagues place a cannula in an artery in the patient’s lower arm/hand and a catheter in a vein in the neck. Anne is calm and talks to both the patient and Hannah. She explains to the patient that she will soon be asleep. She explains to Hannah what she is doing, and how you can tell the difference between a vein, which carries blood back to the heart: ‘It is darker in colour and pumps slower’ and an artery, which carries blood from the heart: ‘It is light in colour, full of oxygen, and has more force. If I had made a hole in an artery, the blood would have squirted out.’

Despite the number of people working in the operating theatre, the atmosphere is calm and pleasant.

Hannah pays close attention to Anne and asks questions while she is working. Anne is obviously impressed with the pupil: ‘Hannah, you are a tough cookie.’

09:10
The patient has been anaesthetised and is ready for surgery. At this stage, Anne and her colleagues’ responsibility is to ensure that the patient is okay during surgery.

09:40
The patient is in good hands in the operating theatre, so Anne goes to the recovery unit where the patients are taken to recover from the effects of surgery. Patients are closely monitored here. Many complications can arise following surgery, such as bleeding, breathing difficulties, a fall in blood pressure, pain and nausea.

Anne will set up a pain pump for the patient. This is a pump with morphine that Anne programs so that the patient can regulate how much pain relief she needs and wants in the days following the operation. We are allowed to use the staff’s break room while she is programming it. ‘Drink squash with sugar,’ she advises. We do as we are told, and talk a bit about what we have seen and experienced so far. Hannah is pleasantly surprised that she has been allowed into the operating theatre already, and at how open and welcoming everyone is.

‘There was some information about anaesthesia at the theme day yesterday, so I understand what is going on,’ says Hannah, and talks more about her wish to become a doctor.

Anne returns and takes the time to talk to Hannah about medical school and her many years working as an anaesthetist at Haukeland University Hospital. She took up her position at the Norwegian Radium Hospital a month ago, and there is still much that is unfamiliar.

10:01
We return to the operating theatre. There are suddenly a lot of people here, and several surgeons with different areas of specialisation discuss the surgery they are about to perform. It is a complex operation that requires cooperation.

After conferring for a while, the surgeons make a plan. Several of the Ullern pupils on job shadowing come by together with a gastrointestinal surgeon. One of the surgeons takes the time to explain the plan to Hannah and the others.

10:20
A theatre nurse goes through a checklist with the physician, surgeon and anaesthetist Anne. Everything is in order, and the operation can begin. Anne uses all her senses to check that the patient is still doing well.

Two surgeons cooperate on the operation. Hannah stands watching behind them. They talk about this and that while they are working, including the musical Book of Mormon. The actual operation is expected to take five hours. After working and discussing amongst themselves for a while, they ask for another surgeon to be called. They need what is called a ‘second opinion’, or another surgeon’s assessment.

There are suddenly a lot of people in the operating theatre, and several surgeons with different areas of specialisation discussing the case. Truls comes in with a couple of pupils who are shadowing him. Truls confers with his colleagues, and one of the surgeons explains that they are uncertain about the best way to proceed. When the surgeons opened the patient up, they found that the assumptions they had made from the outside were not correct. They have to rethink and make a new plan for the operation.

Anne lets us know that this is very unusual. There are rarely this many surgeons involved in an operation, and they do not often spend this much time discussing what to do. She suggests that we take a break and get something to eat. She has to work, though, both with more of today’s patients and planning for tomorrow, but she thinks that we should eat something.

‘Another thing that surprised me was the doctors’ willingness to show and tell me what they were doing and why. During the first day in particular I learnt a lot that I hope will be useful in my future studies. It was also very clear during the operations that good cooperation is incredibly important in order to achieve the best possible outcome for the patients. Everything from how the senior consultants’ discussed to find the best way to proceed during the first operation to how the two surgeons cooperated without needing to communicate much during the second one.’

Hannah Fiksdal.

11:07 Break room
Since we have green scrubs on, we have crispbread with cheese in one of the break rooms. Otherwise, we would have had to change, leave to eat and then change back afterwards. We also have more squash. With sugar. More pupils come in for a welcome break. Four intense hours have flown by. Two pupils have fainted and woken up again.

Ander Bayer from Oslo University Hospital’s communications department also joins us. He made this video about the job shadowing.

 

11:36 Operating theatre 2
Anne comes to get us. Hannah is going to go with her to another operation. Anne is to put another patient under anaesthesia. Again, Anne explains to the patient and theatre nurses who we are. This patient is also having an epidural in the back, and again, Anne alternates between speaking softly and reassuringly and explaining what she is doing to the patient and Hannah. Fourteen minutes after we entered the operating theatre, the patient is under. Two nurse anaesthetists help Anne by monitoring the patient. The theatre nurses wash the abdomen where the surgeons will open up the patient to remove tumours.

12:15 Operating theatre 4
Anne is needed in operating theatre 4 again, where three surgeons are operating on the first patient. They have now decided what to do.

12:23 Break
We get to take another break and have some squash with sugar, while Anne is preparing a pain pump for the second patient.

12:32
The second patient’s operation is under way. Two surgeons are standing face to face, working together. Anne gets a stool so that Hannah can stand by the patient’s head and watch the surgeons work inside the patient’s abdomen. They have made an incision that is held open by a large tool. There is a smell when the surgeon uses an electrosurgical knife to cut tissue and burn small blood vessels. The cancer they are removing is located around the vein and artery, the blood vessels running to and from the heart and legs. The surgeons show Hannah where they have to be careful. The cancer is removed, and they quickly suture the different layers of tissue before stapling the skin. The theatre nurses perform a routine equipment count. The operation is completed in 40 minutes.

The day in the operating theatre was at least as exciting as I imagined! I had not expected that they would allow us to get so close to the patients and really get a proper insight into what happens during an operation and also how the patients are anaesthetised.’

Hannah Fiksdal.

13:35
Anne returns to make sure that both the patient and Hannah are okay. Anne and her colleagues from the anaesthesiology department wake the patient up. The important thing now is for the patient to start breathing again. Everything goes as it should.

13:40
We accompany the patient to the recovery unit, where the patient will remain for a few hours. Anne’s work with this patient is now finished. We go back to her office to change out of the green sterile scrubs. Anne tells Hannah that she will probably doze off early after such a long and intense day. Anne’s shift will last until half past three, when other anaesthetists will take over for the evening shift. In the hall, Hannah thanks Anne for everything she has taught her and for taking care of her during the day.

14:00
As we leave the Norwegian Radium Hospital through the main entrance, we wonder how the first patient whose surgery we saw in the operating theatre is doing. And Hannah says that she is looking forward to another day of job shadowing tomorrow.

Epilogue
The evaluation results for the theme day and job shadowing were excellent. The pupils and teachers were highly satisfied, and it has already been decided that this will be made an annual event for pupils at Ullern upper secondary school who are considering a career in medicine.

‘Finally, I would like to say that it was very inspiring to see how committed Anne and Anna (Anna Winge-Main, who was Hannah’s mentor on the second day of job shadowing) was to their work and how much they loved their job. It was very clear that they are really dedicated to helping their patients. As Anne said, medical school can be hard and difficult, but once you start working as a doctor, nobody regrets their choice.’

Hannah Fiksdal.

READ MORE:

Days to partner up

Roche is looking for new partners in the innovative Norwegian life science scene. 

Roche is one of the largest pharmaceutical companies in the world with about 800 ongoing clinical trials. Within cancer research and development, this translates into about 500 clinical trials for many different types of cancer. Roche is a member in Oslo Cancer Cluster. 

Read more about Roche’s cancer research

As a part of Roche’s scouting for new innovative collaborations, the company arranged two partnering days in the beginning of December together with Oslo Cancer Cluster and the health cluster Norway Health Tech. Together, we welcomed start-ups, biotechs, academic researchers, clinicians, politicians, innovation agencies, students and other interested parties to a two day open meeting.

Partnering with companies 
The first day was at the at Oslo Cancer Cluster Innovation Park and the second day was at Oslo Science Park.

Growing life sciences in Norway is important to Oslo Cancer Cluster, and the larger pharmaceutical companies’ commitment to working with local stakeholders and local companies is an essential part of the innovative developments in this field.

Such collaborations have the potential to bring more investment to Norway and provide platforms for local companies to innovate, thrive and grow. 

— What we want to do is to strengthen the collaborations and to see even more companies emerge from the exciting research going on in academia in Norway, said Jutta Heix, Head of International Affairs at Oslo Cancer Cluster. 

Partnering with academia
Professor Johanna Olweus from the Institute for Cancer Research at Oslo University Hospital was one of the speakers. She also presented the Department of Immunology and K.G. Jebsen Center for Cancer Immunotherapy for a full auditorium at Oslo Cancer Cluster Innovation Park. 

Established back in 1954, the Institute for Cancer Research at Oslo University Hospital is certainly a well established institute and their Department of Immunology is currently involved in all the clinical trial phases.

— The scientists at the institute realise the importance of collaborating with the industry in order to get results out to the patients, Olweus said, and showed some examples of scientist-led innovations from the institute, including the Department of Cancer Immunology.  

In this story, you can read more about how science from Oslo University Hospital is turning into innovation that truly helps cancer patients.

The e-health meeting place

Oslo Cancer Cluster will co-power the conference E-health in Norway (EHiN).

– This is a natural continuation of the work we do in digitalisation, for a better understanding of cancer and better patient treatment, said Ketil Widerberg, General Manager of Oslo Cancer Cluster, at EHiN 2018.

The Norwegian Ministry of Health and Care Services (HOD) and ICT Norway started a collaboration on creating a national meeting place for e-health. ICT Norway launched the first EHiN conference five years ago. Oslo Cancer Cluster is happy to announce that we are now one of the three stakeholders in this yearly conference, together with ICT Norway and Macsimum.

EHiN attracts a large audience from Norwegian government and business. The speaker in this picture is Christine Bergland, Director at the Norwegian Directorate of eHealth (NDE).

Norwegian e-health  
EHiN 2018 took place in Oslo Spektrum and was the biggest meeting place for actors in the public and private sector working with e-health in Norway. The conference had 150 speakers and 1300 participants. EHiN 2019 will be the 6th year of the conference.

What happened at EHiN 2018?

 — EHiN is an important meeting place for public and private actors, and for academia and business. This is a natural prolongation of the many meeting places Oslo Cancer Cluster is always working to establish and preserve, Ketil Widerberg says.

Digital technologies are part of what drives innovation to the maximum benefit of cancer patients. Widerberg is certain that e-health will change the way we understand and treat cancer in the future.

– E-health is part of the matrix for how we give the right medicine to the right patient at the right time, meaning precision medicine. One example of what we specifically do in this area, is a recent project we have been part of, called PERMIDES.

An e-health success story
From August 2016 until August 2018, Oslo Cancer Cluster together with five other European clusters in medicine and ICT, was managing a Horizon 2020 EU project called PERMIDES. It is a European e-health success story in bringing together biopharma and IT sectors.

D.B.R.K Gupta Udatha at the EHiN conference in 2018. Dr. Udatha was the project manager for PERMIDES at Oslo Cancer Cluster.

D.B.R.K Gupta Udatha is Director (Digital and EU) at Oslo Cancer Cluster. He has been instrumental in PERMIDES and explains why the project has had such a positive effect on the small and medium sized enterprises (SMEs) it has worked with. 

PERMIDES was a project to anchorage digital transformation across SMEs in biotechnology and pharmaceuticals. We aimed to see where the biopharma companies were lacking digital infrastructure and where the ICT companies could bring digital skills to make sure that the biopharma companies were up to date, Dr. Udatha said at EHiN 2018.

The project created matchmaking opportunities between these two different categories of companies and was awarded EUR 4.8 million from the EU’s Horizon2020 programme. It addressed specific challenges for SMEs to go digital with a precision medicine product.

Read more bout the PERMIDES project here.

Let us cooperate on precise health technologies

International cooperation is key to fulfilling our vision of making cancer treatments more precise, and giving the patients new treatments more quickly.

This opinion piece is written by Ketil Widerberg, General Manager at Oslo Cancer Cluster. It was first published in the Norwegian newspaper Today’s Medicine, Dagens Medisin, 30 October 2018. 

The countries in Northern Europe have contributed to developing medical treatments that we today could not imagine living without. From the British discovery of antibiotics to the Danish development of a treatment for diabetes. Once again it is time for Northern European health innovation, this time in the field of health technology. What might the prime ministers from Northern Europe focus on when they meet in Oslo on 30 October to discuss health technology?

They might want to point out concrete and state-of-the-art initiatives from their respective countries. It could be Swedish biobanks, Finnish artificial intelligence, Danish health data, English genomics and Estonian health blockchain. These are exciting initiatives that make medicine more precise. This is particularly important when it comes to cancer because more precise treatments could save lives and limit the late effects resulting from imprecise treatment.

This opinion piece is written by Ketil Widerberg, General Manager at Oslo Cancer Cluster. It was first published in the Norwegian newspaper Today’s Medicine, Dagens Medisin, 30 October 2018.

At the same time, we see the contours of serious challenges arising with more precise medicine, such as each unit becoming more expensive. Smaller patient groups also mean that it is harder to find enough patients to understand the biological processes and the consequences of new medical treatments. As the prime ministers gather in Oslo to discuss health technology and plan the road ahead, it would not be amiss for them to look back in time and find inspiration from another technological development.

Precise through cooperation
In the 1990s, the search engine Yahoo helped us to quality-assure by categorising and being precise when we needed information on the internet. Yahoo thus contributed to the internet changing the world. However, the amount of data soon became enormous and complex, and a never-ending need for resources and experts arose. The traditional categorisation to ensure quality and structure the data became an impossible task.

This is very similar to what is happening in the health field today. We are constantly collecting more data and educating an increasing number of experts. With a few exceptions, every country is now collecting their data in their own registers and using a great deal of resources on assuring the quality of the data. The countries are rightfully proud of their initiatives. In Norway, we are proud of our biobanks and our health registers, such as the Cancer Registry of Norway. At the same time, we need to ask ourselves whether this national strategy really is the smartest way forward.

Let us go back to Yahoo. Towards the end of the 1990s, some engineers in California thought differently about the internet. How about using cooperation as a quality indicator? Instead of categorising, the links between the websites could ensure data quality. This is how Google was born, and we got precision, quality and insight into data that changed the world.

There are different challenges in the health field than on the internet. Data are more sensitive and the consequences for individuals can often be more dire. At the same time, health technology, in many ways, has reached the same point as the internet faced in the 1990s.  We do not have the quantity, the methods for analysis, or the quality to fully exploit the data to gather insight, or for treatment or innovation – yet.

From Yahoo to Google level
One way in which we could tackle the health technology challenges the data present us with is through international cooperation. It is about two things: to gather enough data, and to analyse the data to provide better and more precise treatment. The initiatives so far are promising, but they lack the potential to make the leap from Yahoo to Google.

The Northern European prime ministers can probably acknowledge this. The question is: what can they do? Should they encourage smart young engineers to analyse health data instead of developing the next app? Or should they change the way the hospitals buy technology?

A step in the right direction could be to look at what works best in the other countries. At the same time, we need to avoid new initiatives merely becoming a better horse-drawn carriage. Are there initiatives in existence that are scalable internationally so that we can bring health data up to the next level together? The answer is yes, but it requires visionary initiatives that have not been done anywhere else.

Common clinical studies
An area that the prime ministers will be able to highlight is a Northern European initiative for clinical studies. Together, the countries have a large number of patients, which gives researchers and doctors a better basis in their studies to understand more and provide better treatment. Such an initiative could also use health data from the national health services collected on a daily basis in several countries, known as real world data, instead of eventual clinical studies with patients over several years. This would be both quicker and much cheaper.

The prime ministers might also agree on cooperating on Northern European genetics. For 13 years, we collaborated on mapping our genes in the international  Human Genome Project. Now we need to get together to understand genes and treat the patients. With prioritised funding, genetics will soon be a part of the everyday clinical life in England. We can learn a lot from their experience.

Artificial intelligence
Lastly, the Northern European prime ministers may wish to collaborate on artificial intelligence in the health field. Today, cancer treatment, for instance, often only works on three out of ten patients. Artificial intelligence will change how we understand diseases such as cancer and how we treat the patients. The experiences from Finland of introducing artificial intelligence will help other countries to understand where the barriers are and where help might be needed first.

Oslo Cancer Cluster’s vision is to make cancer treatment more precise and provide new treatments more quickly to the patients. We see that international cooperation is key to obtaining this goal. As a result, we could also discover diseases more quickly and reduce the costs of the national health services. We hope the Northern European prime ministers will delve into these issues when they meet to discuss the health technologies of the future here with us.

By Ketil Widerberg, General Manager at Oslo Cancer Cluster.

– An idea needs to attract investors

Meet Thomas Andersson, our new Senior Advisor Business Development. How could he be of help to your startup company? 

— The most important thing I do is to get the startup companies rolling.

Thomas Andersson, the new Senior Advisor for Business Development at Oslo Cancer Cluster and Oslo Cancer Cluster Incubator, looks dead serious as he makes this statement, but immediately after he lets out a smile and elaborates:

— A company needs to be investible. An idea needs to attract investors.

A lifetime of experience
Thomas holds a Ph.D. in Physical Chemistry from Lund University in Sweden and has more than 30 years of experience from establishing, operating and funding start-ups in the life science field. He has a long background in business development in health tech startups, all the way back to the early 1980s.

— I’m that old! I went straight from my Ph.D. in biophysics into the problem-solving of business development.

In his career he has also taken on issues with patents and sales and he even bought a company that produced monoclonal antibodies with some friends and remodelled and sold it. 

— What did you learn from this journey? 

— I learned quite a lot, including the production business and the cell cultivation biotech business from the floor. I also learned how to lay out the production manufacturing facility.

See it like an investor
Thomas Andersson knows the biotech startup-scene from the investors’ point of view. He started to work at the tech transfer office of Karolinska Institutet in Sweden. It was called Karolinska Innovations back then, now it is known as KI Innovations.

— We raised a lot of money there, formed 45 companies as a group and we had a fantastic time! 

After 8 years he was recruited to Lund and worked in Lund University Bio Science and tried to vacuum clean the whole university for life science innovation.

— And we did find a lot! In the end there were about 20 investment proposals and those ended up in 9 investments, of which we turned down 5 or 6. Two of them are now at the stock market. 

In total, Thomas Andersson has been involved in starting about 20 companies, of which 5 survived and are now on the stock market.

Normally, it is said that only 1 in 30 biotech startups make it. 

 

Thomas Andersson, Senior Advisor Business Development. Photo: Oslo Cancer Cluster

Here for you
— How did you end up here at Oslo Cancer Cluster?  

— I have had my eyes on Oslo Cancer Cluster for a while. I have liked the ideas that the cluster stands for. And I wanted to do something new in the end of my career. That is why I am here as a senior advisor now. I like it here! I am working on very interesting projects and ideas.

Our new Senior Advisor Business Development is present in Oslo Cancer Cluster Incubator nearly every week although he still lives in Lund, Sweden, on a farm in the woods where he can be practical and hands-on with hardwood and fly fishing.

— My door is open to people in the cluster and incubator with projects and ideas. I have a network that can help them and I have the experience of how investors, scientists and other actors can value a company. And being a Swede in the Norwegian system; I am basically here also to encourage you to think differently.

 

Interested in more funding opportunities for your company?

Check out our Access to Capital-page. 

 

T-cells and the Nobel Price

What does the Nobel Prize have to do with cancer research in Oslo Cancer Cluster?

This year the Nobel Prize for Physiology and Medicine was awarded to James P. Allison and Tasuku Honjo for their work on unleashing the body’s immune system to attack cancer. This was a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options.

A statement from the Nobel committee hailed the accomplishments of Allison and Honjo as establishing “an entirely new principle for cancer therapy.”

This principle, the idea behind much of the immunotherapy we see developing today, is shared by several of our Oslo Cancer Cluster members, including Oslo University Hospital and the biotech start-up Zelluna.

– This year’s Nobel Price winners have contributed to giving new forms of immunotherapy treatments to patients, resulting in improved treatments to cancer types that previously had poor treatment alternatives, especially in combination with other cancer therapies, said doctor Else Marit Inderberg as a comment to the price.

She leads the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital. The unit is present in Oslo Cancer Cluster Incubator with a translational research lab.

Inderberg has been studying and working with T-cells since 1999, first within allergies and astma, before she was drawn to cancer research and new cancer therapies in 2001.

So, what is a T-cell?
T-cells have the capacity to kill cancer cells. These T-cells are a subtype of white blood cells and play a central role in cell-mediated immunity. They are deployed to fight infections and cancer, but malignant cells can elude them by taking advantage of a switch – a molecule – on the T-cell called an immune checkpoint. Cancer cells can lock onto those checkpoints, crippling the T-cells and preventing them from fighting the disease.

The drugs based on the work of Nobel Prize winners Allison and Honjo belong to a class called checkpoint inhibitors – the same immune checkpoint that we find on T-cells. Drugs known as checkpoint inhibitors can physically block the checkpoint, which frees the immune system to attack the cancer.

Group leaders Else Marit Inderberg and Sébastien Wälchli often work in one of the cell labs in Oslo Cancer Cluster Incubator. Photo: Christopher Olssøn

 

– We work on other ways of activating the immune system, but in several clinical trials we combine cancer vaccines or other therapies with the immune-modulating antibody, the checkpoint inhibitors, which the Nobel Price winners developed, Inderberg explained.

Inderberg and her team of researchers in the translational research lab in Oslo Cancer Cluster Incubator use the results from the Nobel Price winners’ research in their own research in order to develop their own therapy and learn more about the mechanisms behind the immune cells’ attack on the cancer cells and the cancer cells’ defence against the immune system.

– This Nobel Prize is very inspiring for the entire field and it contributes to making this kind of research more visible, Else Marit Inderberg added.

– Our challenge now is to make new forms of cancer therapies available for a large number of patients and find ways to identify patient groups who can truly benefit from new therapies – and not patients who will not benefit. Immunotherapy also has some side effects, and it is important that we keep working on these aspects of the therapy as well.

From research to company
Most of the activity of the translational research lab in Oslo relies on the use of a database of patient samples called the biobank. This specific biobank represents an inestimable source of information about the patients’ response to immunological treatments over the years. Furthermore, the patient material can be reanalysed and therapeutic molecules isolated. This is the basis of the Oslo Cancer Cluster member start-up company Zelluna.

 

Want to know more about Zelluna and the research they are spun out of?

This is a story about their beginning.

Curious about new research from the Department of Cellular Therapy in Oslo?

More on their webpage.

 

American tech and Norwegian health data

Combining country scale population data with world class computer systems and algorithms will push the boundaries of precision medicine.

This is a story about the unique American-Norwegian collaboration that combines the best health data with the most powerful computers in a pioneer project run by Cancer Registry of Norway and Lawrence Livermore National Laboratory.

Data to screen cancer 
The ongoing project was initiated after a talk on tech between the General Manager of Oslo Cancer Cluster and a Senior Scientist from Lawrence Livermore National Laboratory. Some months later, in San Francisco, a meeting room was filled with some of the world’s best minds on cancer and technology. The Norwegians knew cancer and the Americans knew computing. The outcome was unknown. 

They identified a concrete challenge. Can we see patterns in data to screen cancer more precisely?

The quest resulted in a successful cooperation between Lawrence Livermore and the Cancer Registry in January 2016 where a team from the Cancer Registry started the first project on cervical cancer. If successful, they would potentially identify and screen high risk patients earlier and leave the low risk patients unburdened. 

Now there are two ongoing projects, one on cervical cancer and one on multitask learning for cancer. The goal is to make predictions more accurate and improve precision medicine. 

– If successful we can potentially identify and screen high risk earlier and leave the low risk unburdened. The individual and social impact of such a strategy is significant. This may be the reason why Joe Biden mentioned details from this project at a UN Assembly last year, Widerberg said.

Former Vice President Joe Biden led the American cancer initiative known as the Cancer Moonshot Blue Ribbon Panel. Two years ago, when the collaborative project between Norway and the USA had just started, the Blue Ribbon Panel released a report describing ten transformative research recommendations for achieving the Cancer Moonshot’s ambitious goal of making a decade’s worth of progress in cancer prevention, diagnosis, and treatment in just 5 years.

One of the ten recommendations was to expand use of proven cancer prevention and early detection strategies.

The major research questions
– One of the major research questions right now is How do we design the optimal screening programs? Another is how to actually take advantage of the registry data that we have, said Giske Ursin, Director of the Cancer Registry of Norway.

In Norway, and similarly in the other Nordic countries, we have registries on various diseases, pregnancy/births, vaccinations, work history/unemployment, income and much more. We have data sets dating from the 1950s. That is unique in the world. 

– If you look at enough data, you can find interesting links that can be explored in the clinical world or elsewhere. For instance; how do other diseases affect cancer diseases? We need international expertise to cover areas we are not experts on ourselves, she said, showing a picture of one of the super computers at Lawrence Livermore.

Cancer and national security
Lawrence Livermore National Laboratory is a national security laboratory and part of the U.S Department of Energy. The laboratory has over 5000 employees, of which at least half are engineers and researchers.

– We have the mandate from the government to push the forefront on subjects like bio security. Precision medicine is alined with the bio security mission, but it is even more relevant to the super computing research mandate. What are the next types of problems that will move this forward? Biomedical data complexity. That is why we are in this, Ana Paula de Oliveira Sales from Lawrence Livermore National Laboratory said in her presentation. 

Some ingredients of the project on cervical cancer is to improve cancer outcome prediction by combining disparate cancer types. The preliminary results are encouraging.

 

Break down barriers
John-Arne Røttingen, CEO of the Research Council of Norway, gave a talk on how collaborations between the Nordic countries and other countries are important for population based clinical research and health research.

– Personalized medicine is full of promise and we want to contribute to this progress, but we cannot do this only with our data. We have to collaborate with other countries and with different fields of research, he said.

One important country in that respect is of course the USA.

Kenneth J. Braithwaite, U.S Ambassador to Norway, talked about the opportunities with the Norwegian databases in a meeting in the Oslo Cancer Cluster innovation park 20 September 2018.

— I have learned the past few years that data is king, and we need to wrap our arms around this. I think there is a responsibility from the governments to begin to break down the barriers and truly find a cure to cancer. That’s what we are up against, said U.S. Ambassador to Norway Kenneth J. Braithwaite, who is Rear Admiral of United States Navy (Retired).

— As we say in the Navy, full speed ahead!

Norwegian life science on exhibition

The strong life science actors in Norway joined forces during the conference Nordic Life Science Days 2018.

Oslo Cancer Cluster aims to enhance the visibility of oncology innovation made in Norway by being a significant partner for international clusters, global biopharma companies and academic centres. We used the conference Nordic Life Science Days 2018 in Stockholm this September week to show the growing Norwegian life science environment.

The Norwegian stand
From 2015 onward, we have had a Norwegian stand promoting Norwegian healthcare and life science industry together with other life science actors in Norway. Our partners this year were Norway Health TechAleapUniversity of Oslo: Life ScienceThe Life Science ClusterInvent2NORINNansen Neuroscience NetworkLMI, Centre for Digital Life NorwayInnovation Norway and The Norwegian Research Council. Together we represent the essence of Norwegian Life Science.

 

The Norwegian delegation with Ambassador Christian Syse visited the stand in 2018. From the left: Jutta Heix, International Advisor at Oslo Cancer Cluster, Christian Syse, the Norwegian Ambassador to Sweden, Tina Norlander, Senior Advisor in Innovation Norway and Jeppe Bucher, Intern at the Royal Norwegian Embassy in Stockholm.

 

A European meeting place
There are several important meeting places for life science actors in Europe, such as BIO-Europe, BIO-Europe Spring and Nordic Life Science Days at the top of the list. Oslo Cancer Cluster is the oncology partner at the Nordic Life Science Days.

Are you interested in what the big oncology session during the Nordic Life Science Days 2018 was all about? The topic was cancer immunotherapy, also known as immuno-oncology.

This article gives you the highlights of the session.

More Nordic collaboration
As a region, the Nordic countries are of international importance in the field of cancer research and innovation, especially in precision medicine, and Oslo Cancer Cluster participates in advancing Nordic collaboration. Oslo Cancer Cluster also engages in more cancer specific European events. One example is the Association for Cancer Immunotherapy Meeting (CIMT), which is the largest European meeting in the field of cancer immunotherapy.

Read more about our international work

The next wave in cancer immunotherapy

What is driving the next wave of innovation in cancer immunotherapy?

This was the question the experts tried to answer in the oncology session of the conference Nordic Life Science Days in Stockholm 12 September.

International experts from pharma, biotech, academia and the investment community discussed how different approaches to innovative cancer treatments could address challenges and shape the next wave of innovation in cancer immunotherapy, also known as immuno-oncology.

They touched upon approaches such as big data, personalized medicine, new targets and lessons from neuroscience.

Over the past few years, the rapid development of novel cancer immunotherapy approaches has fundamentally disrupted the oncology space. Cancer immunotherapy has not only become a key component of cancer therapy, but it has also reshaped priorities in oncology research and development (R&D) across the industry, with unprecedented clinical success in certain cancer types continuing to fuel record investment and partnering activity.

As of today, more than 2.000 immuno-oncology agents, including checkpoint-inhibitors, vaccines, oncolytic viruses and cellular therapies are in preclinical or clinical development.

Read more about the cellular therapy research of Oslo Cancer Cluster members Oslo University Hospital and Zelluna.

Why so little effect? 
Despite all of this promising research, only a minority of patients benefits from effective and durable immuno-oncology treatments. Why is this happening?

Part of the answer is found in resistance or unexplained lack of response. This could be addressed through a better understanding of optimal timing of therapy, better combination therapy design, or improved patient selection. Another part of the answer lies in a lack of novel targets and of an overall better understanding of specific immune mechanisms. This lack of understanding is becoming a roadblock to further advance in this research space.

What can the experts do about this? It turns out they have several approaches. Two of the main ones include big data and turning so-called cold tumours hot.

Big data will expand
“We believe that this can be changed by adding deep and broad data from multiple sources”, said Richa Wilson, Associate Director, Digital and Personalized Healthcare in Roche Partnering.

“We use the words meaningful data at scale, that means high quality data with a purpose: to answer key scientific questions”, she said at the session.

These data will continue to evolve from clinical trials and aggregated trials and registries and in the future from real time and linked data. There was about 150 exabytes health data in 2015 and in 2020 it is expected to grow into 2300 exabytes, mainly from digital health apps and scans from the hospitals, Oslo Cancer Cluster member Roche presented.

Hot and cold tumours 
Emilio Erazo-Fischer, Associate Director of Global Oncology Business Development at Boehringer Ingelheim explained the cold and hot tumours and how the cold tumours can be turned hot and thus open for cancer immunology treatment. It is well explained in this short film by Oslo Cancer Cluster member Boehringer Ingelheim

Martin Bonde, CEO of Oslo Cancer Cluster member Vaccibody also presented how they try to turn the cold tumours hot.

The Norwegian company Vaccibody is a leader in the field of cancer vaccines and they are very ambitious. They currently have a trial for melanoma, lung, bladder, renal, head and neck cancer.

The impact of stress
Erica Sloan is the group leader of the Cancer & Neural-Immune Research Laboratory in Monash University in Australia. She gave a talk on how neural signalling stops immunotherapy working. The researchers at Monash University have led mouse studies where the nervous system is stressed. They show that immunotherapies fail unless peripheral neural stresses are excluded.

The threat of a cancer diagnosis is stressful, as are most certainly cancer and cancer treatments. The tumour micro environment inside the cells can hear the stress signal, that is adrenalin.

“So what can we do about it?” Erica Sloan asked, before she answered:

“Treating with beta blockers. Blocking neural signalling prevents cancer progression. It also has an effect on immunotherapies.”

Erica Sloan is the group leader for the Cancer & Neural-Immune Research Laboratory in Monash University, Australia. She gave an introduction to the effect of neural signalling on tumour cells during the NLSDays in Stockholm 2018.

“Could stress be responsible for non responders?”, the moderator Gaspar Taroncher-Oldenburg from Nature Publishing Group asked her in the panel. 

“Absolutely, neural signalling can be responsible for this. And the exciting thing with data sharing here is that it can allow us to see and understand the rest of the patients’ biology. We need to look more at the patients’ physiology and not just the tumour biology” she said. 

Get to know our new chairman

CEO of Ultimovacs Øyvind Kongstun Arnesen is the new chairman of Oslo Cancer Cluster. Get to know the guy!

An Oslo born family man who likes the outdoors, and took the jump from hospital work to entrepreneurship by the way of the health industry.  Remarkably, before all this he dazzled the audience at the National Theatre beside such greats as actor Per Aabel.

Tell us about your professional background!

– I started studying medicine in Oslo. Close to my graduation I got involved in a large meningococcal vaccine trial involving 170 000 people at the Norwegian Institute of Public Health. It was my first involvement with clinical trials. I found the work both fun and rewarding and learned a lot from all the follow-up the trial demanded.

Internship in Lofoten
An internship as a Physician in Lofoten in the north of Norway followed. It culminated in a position as municipal medical officer in Flakstad municipality in Lofoten and at the surgery department in Lofoten (then Gravdal) Hospital.

– A position I held for six years. I now moved back to Oslo and took up a position as clinical trial manager in Astra (before Astra and Zeneca merged) were I among other things was responsible for a large clinical trial on beta blockers in heart failure. After that I decided to work as a clinician again and started at AHUS as an orthopedic surgeon and moved on to Ullevål University Hospital.

– Part of my job was to be an investigator in several clinical trials documenting efficacy and safety of new oral anticoagulants and improved procedures in orthopedic surgery. My last position as a clinician was as consultant surgeon at the Ullevål pediatric orthopedic department.

After many years as a clinician Kongstun Arnesen took the jump into the health industry.

– My first job was Medical Director in Bristol-Myers Squibb. One of my tasks was to discuss participation in one of the first trials with ipilimumab (a cancer drug with the trade name Yervoy) at the Radium Hospital. There I was also introduced to professor Gustav Gaudernack and his work with a cancer vaccine. Now, this history has made a full circle where I now am working with a combination of an improved version of this vaccine – and ipilimumab.

First employee of Ultimovacs
Bristol-Myers Squibb (BMS) closed their office in Oslo, and Arnesen moved to the German company Boehringer Ingelheim. First as Medical Director for Norway and later as Head of Clinical Operations Nordic.

– I stayed there until 2012 when I became the first employee of Ultimovacs.

Read more about Ultimovacs

– I also think we were the first to move into Oslo Cancer Cluster Incubator. I remember we had to store all the belongings in the garage because they were still finishing our office space.

How do you think your CV can be beneficial for you as chairman?

– I know Oslo Cancer Cluster very well as a member. And from different types of organizations: As a clinician, as a start-up, as part of a pharmaceutical company. I have been through collaboration with many of the other members and have a good overview of the organization.

How will you combine your work as CEO at Ultimovacs and Chairman?

– I don’t see many problems. Of course, I must be aware of who I’m representing, but I don’t see many potential conflicts. We have mutual beneficial interests. I would like to add that I was surprised when I was proposed as a candidate for the position as Chairman at OCC. It is an organization I like and respect very much.

What ambitions do you have on behalf of Oslo Cancer Cluster?

– We need to fulfill the expectations the members have for us, and I have some ideas on how OCC can expand its role of contributing to improved cancer research. But I think I will have a special focus on clinical trials. The importance of clinical trials in general and the importance of getting more of them to Norway.

The childhood actor
What do you do when not working with cancer?

– I’m an outdoors man! I go hunting and fishing when I can. I have an old cabin in Rendalen. As most surgeons I like to work with my hands, I fix and build. And of course, I have a large family. Four children that are my own, two step sons and I’m the grandfather of three soon to be five grandkids. There goes most of my spare time! But that’s a good thing.

Anything most people do not know about you?

– I was a childhood actor at our National Theatre for seven years. Among other things I played Rasmus in  “Rasmus på Loffen” by Astrid Lindgren. For all of the seven years I was there, I was acting in different plays with many of Norway’s most renowned actors, such as Per Aabel.

How did this happen?

– Back in the days they didn’t do official auditions the way they would have done today. It was my PE teacher that had some connection to the theatre and he brought the whole class in for an audition for Rasmus. I seriously considered becoming an actor before going to medical school.

 

 

 

In need of start-up funding?

Are you and your cluster company in need of early stage funding? Apply for Innovasjonsrammen by the 10th of September and compete for important start-up money.

Early financing for establishing companies is often limited, but can be absolutely crucial to get important projects off the ground. Therefore, Innovation Norway has created the special funding program Innovasjonsrammen (English: Innovation Frame) to support cluster start-ups at an early stage.

All our start-up members are invited to apply for money and note that you have the possibility to collaborate with partners outside the cluster.

NOK 10 million in funds are available for the calender year 2018. Two of our cluster members – Seald and NorGenoTech  – received funding earlier this year through the program, NOK 300 000 each.

 

For more information contact Bjørn Klem, General manager Oslo Cancer Cluster Incubator HERE.

The following criteria follow the application:

  1. The project must be a collaboration consisting of at least two companies and were one needs to be a member of the cluster.
  2. Innovation Norway offer a maximum of 50 percent funding for each project
  3. The project must comply with the guidelines set for research and development projects by the EEC regulations.
  4. The financing must have a substantial impact on the project.
  5. The project must comply with Innovation Norway’s demands for sustainability. All applicants must explain how they take care of their social responsibility through responsible business ethics, and describe possible positive environmental and social effects of the project. Read more on Innovation Norway’s guidelines here.
  6. The use of the funds must be reported by January 2020, possibly based on a milestone plan.

Can Norway compete internationally on health?

Can Norway take a leading international position within the health industry? This was the main question for one of our discussions at Arendalsuka last week.

A report released in April this year shows a Norwegian health industry on the rise. However internationally, Norway is still comparatively small even compared to our Nordic neighbors.

SEE VIDEO FROM THE MEETING (Facebook, in Norwegian)

See our other events during Arendaluka:

  1. Fremtidens kreftbehandling i Arendal (In Norwegian)
  2. Tim: Pasienten som kommer hjem (In Norwegian)

Feasibility study
Oslo Cancer Cluster, Norway Health Tech, LMI, Innovation Norway and the The Research Council of Norway have, based on the ambition of creating a profitable health industry in Norway, conducted a feasibility study regarding the strategical positioning of the Norwegian health industry. 30 key position holders within the industry have contributed to the report, giving their views on how Norway can build a stronger health industry.

READ THE REPORT

The event in Arendal featured a a debate panel consisting of Ketil Widerberg from Oslo Cancer Cluster, Kathrine Myhre from Norway Health Tech, Monica Larsen from Legemiddelindustriforeningen, Hans Eirik Melandsø from Innovasjon Norge and Anne Kjersti Fahlvik from The Research Council of Norway.

Collaboration key
Collaboration between public institutions and the innovative private sector is important to create a health industry of some size, both according to the report published in April and the participants in the Arendal-panel. Oslo Cancer Cluster facilitates this kind of innovative public-private collaboration.

– We represent the whole value chain when it comes to cancer treatment and innovation. Research institutions, hospitals, as well as both small and large companies, Ketil Widerberg explained.

One example of how Oslo Cancer Cluster contributes to a functioning health industry is the new Car-T cancer treatment developed by Novartis. Important research and treatment conducted by the department of cell therapy at the Radium hospital is funded for clinical studies by the pharmaceutical company Novartis, the production is made possible by Norwegian innovations from Thermo Fischer, while the Norwegian Medicines Agency works hard securing international treatment approval.

– This type of collaboration saves lives while creating employment and income, said Widerberg.

Three ways to recreate success
The question is how do we recreate these type of success stories, and Widerberg emphasized three different aspects: More clinical studies, releasing the shackles on our health data and cultivating high-end research.

– Today, a successful Norwegian Centre of Excellence loses it’s funding after 10 years. If the research is a success, it should be doubled, he said.

Tim: Pasienten som kommer hjem

Kan digitale løsninger lette hverdagen for pasienter som kommer hjem etter endt behandling?

Det ville Oslo Cancer Cluster, sammen med Kreftforeningen og IKT Norge finne ut av på ettermiddagsprogrammet under Arendalsuka onsdag.

Arrangement: PASIENTEN KOMMER HJEM – PAKKEFORLØP OG DIGITAL OPPFØLGING

Kreftpasienten Tim
Daglig leder for Oslo Cancer Cluster og konferansier Ketil Widerberg begynte med å presentere oss for «Tim».  Tim er hovedpersonen i en rekke animasjonsfilmer fra Oslo kommune, der de ser for seg hvordan de skal møte innbyggerne i kommunen i framtida.

Hvorfor henger helsesektoren etter resten av utviklinga? (Ketil Widerberg)

Vi fikk se pasienten Tim og hvordan, i et drømmescenario, Tim blir tatt vare på etter endt kreftbehandling.

Dette er viktig fordi: «Vi vil stadig få flere og flere mennesker som får en kreftdiagnose», ifølge Ketil Widerberg.

I filmen ser vi Tim ta i bruk app-er og duppeditter for lette sin hverdag som pasient. Teknologi vi «alle» allerede bruker i hverdagen.

— Så hvorfor er dette et drømmescenario, spurte Widerberg etter å ha sett filmen.

— Er ikke dette teknologi vi har allerede i dag? Hvorfor henger helsesektoren etter resten av utviklinga?

Transportplan for data
Finansbyråd Robert Steen, som har jobbet i 15 år med digitalisering for Schibsted, mener vi mangler samhandling innen digitalisering.

— Vi må lage en nasjonal transportplan for data. Først da kan vi få en verden der pasienten får all mulig hjelp digitalisering faktisk kan tilby, sa Steen.

“Vi har teknologien. Vi må bare ta den i bruk!” (Anne Lise Ryel)

Anne Lise Ryel, generalsekretær for Kreftforeningen, understreket hvor viktig digitalisering er for hverdagen til dem som kommer hjem etter kreftbehandling, og at det finnes et stort potensial for både pasient og sykehus når det kommer til digitalisering.

— Jeg husker når man gikk i banken for å betale regninger. Det er veldig lenge siden nå, men det virker som helsesektoren ikke har beveget seg videre som resten av samfunnet, poengterte Ryel og sa senere:

— Vi har teknologien. Vi må bare ta den i bruk!

— Vi må kunne ta prøver i hjemmet slik diabetikere tar insulin. Det sparer pasienten for tid og energi, og gir flere ledige sykesenger, var ett av innspillene til Andreas Stensvold ved Sykehuset Østfold, der de prøver å ta i bruk mer moderne teknologi.

— Vi må bruk IT i kreftbehandlingen fordi vi trenger alle mulige hjelpemidler når stadig flere får kreft, poengterte Stensvold.

Må bestille smartere
Et sted å begynne for å gjøre digitale hjelpemidler tilgjengelig for pasienter, er å bestille smartere. Dette snakket Wenche Dehli, Helse- og sosialdirektør i Kristiansand kommune, om.

— Vi må samle bestillingene våre slik at lettere kan få de til å snakke sammen, sa hun, og videre:

— Pasienten skal ikke merke hvem de får tjenesten fra. Alt må koordineres på forhånd av kommune og sykehus.

Møtet avsluttet med en debatt med flere av deltakerne ledet av Nard Schreurs, avd. direktør for e-helse og smart-tech, IKT Norge.

Picture of group discussing during Arendalsuka.

Fremtidens kreftbehandling i Arendal

Gikk du glipp av frokostmøtet vårt i Arendal? Her kan du få det med deg likevel!

Fremtidens kreftbehandling handler om helsedata, persontilpasset medisin, kreftvaksiner og ambisiøse forskere og pådrivere. 

Noen av disse pådriverne kunne du se og høre under vårt frokostmøte i Arendal 15. August 2018. Møteserien “Fremtidens kreftbehandling” er et samarbeid mellom Kreftforeningen, MSD (Norge), Legemiddelindustrien, AstraZeneca, Janssen og Oslo Cancer Cluster. 

 

 

De ambisiøse forskerne kommer fra MetAction, det eneste studiet gjennomført i Norge som bruker en bredspektret prøve av arvematerialet i kreftsvulsten for å avgjøre hva slags behandling hver pasient bør få. Det er virkelig persontilpasset behandling.

— Vi har behandlet pasienter med spredningssvulst. Vi har tatt en prøve og sekvensert DNA i kreftsvulsten. Vi har sett på alle genene som vi i dag vet at er viktig for kreftutvikling, sier Gunhild M. Mælandsmo, biolog ved Oslo Universitetssykehus.

Det er en komplisert infrastruktur i denne behandlingen, og mange eksperter er involvert, før onkologer kan komme fram til hva slag persontilpasset behandling pasienten skal få. MetAction har rett og slett bygget opp en infrastruktur for ekspertene der de kan bruke hverandres kompetanse for å gjøre et tilpasset behandlingsvalg.

Pasientene har hatt nytte av dette. 6 av 26 pasienter hadde effekt av behandlingen og 2 hadde langvarig effekt og er nå tilbake i jobb. Dette er pasienter som var i et stadium av kreft der de var helt uten andre alternativer.

Etter 26 pasienter tok pengene i forskningsprosjektet slutt.

Forskerne og kreftlegene vet fortsatt ikke om de får penger til å fortsette.

— Dette er teknologi som finnes i dag. Vi har vist at vi kan gjøre dette i dag på sykehuset. Helsepolitikerne må ta beslutningen om at dette skal bli tilgjengelig for vanlige kreftpasienter, presiserer kreftkirurg Kjersti Flatmark.

Du kan lese mer om Metaction og se dem in action under Cancer Crosslinks i januar 2018 i denne saken (på engelsk)

Du kan høre hva helsepolitikerne Sveinung Stensland fra Høyre og Ruth Grung fra Arbeiderpartiet har å si til dette i videoen over, i samtale med Karita Bekkemellem fra Legemiddelindustrien og Kirsten Haugland fra Kreftforeningen.

Der vil du også kunne lytte til Giske Ursin fra Kreftregisteret og Jonas Einarsson fra Radforsk i samtale om verdiene i norske helsedata og helseregistre, og norske firmaer som utvikler fremtidens kreftbehandling.

Promising treatment for late stage cancer

MetAction has used targeted gene therapy to give patients with metastatic cancer a treatment method. The future of this work is now in danger.

Late stage cancer is still a real challenge for modern medicine. The gene mutations multiply and are difficult to control. However, the research group MetAction, based at the Oslo University Hospital, has used targeted gene therapy to give patients with metastatic cancer a treatment method.

The results have been very promising, but all the good work could go to waste.

Targeted Gene Theraphy has been described as one of the new important weapons in the fight against cancer for two decades now. Norwegian hospitals still lack an infrastructure to facilitate this type of treatment.

Meet MetAction
MetAction started as a research project in 2014 to explore the possibilities of targeted gene therapy, but ended in 2017 because of a lack of funding. The project made use of modern genetic tools, combined with knowledge across the cancer treatment spectrum, to help patients with late stage cancer.

Cancer Specialist Anne Hansen Ree explained how it all started at this year’s Cancer Crosslinks in January.

– We had this idea to use targeted gene therapy for people who suffered from late stage cancer to deal with the types of mutations common for this group, she said.

With this idea as a backdrop they started developing a research project.

– To do this we had to put together quite a large project with a lot of new diagnostic tools, as well as specialists with the knowledge to interpret the data and find patients that were willing to join the study, she explained.

During the project, MetAction found that they could give at least half of the patients in their study a treatment based on the genetical data collected.

A patient group previously labelled “terminally ill” could actually receive effective treatment.

You can read about the cancer patient Grete and how she was successfully treated with late stage stomach cancer by MetAction in this article in the Norwegian newspaper VG (in Norwegian).

Knowledge in danger
All the knowledge and competence the MetAction group has established in this field is now in danger of disappearing.

– It’s sad to see that all the good work from this project could vanish and that a patient group loses out on a possible treatment method, said molecular pathologist and doctor Hege Russnes.

Both Russnes and Ree emphasized that the research group both want to and should continue.

Join the debate
Last year at the yearly political get-together event “Arendalsuka” Oslo Cancer Cluster and meeting-co-hosts posted the question: “Why can’t we have a second-opinion board for patients that have run out of options, like in Denmark?” Now that a Norwegian Expert Panel is about to come to fruition–as promised by the Norwegian Minister of Health, Bent Høie–it presents an excellent possibility to include personalized gene treatment as a viable treatment option for patients with late stage cancer. We will discuss this possibility during our meeting in Arendal next week.

8 AM Wednesday 15 August, MetAction will present their project and we will discuss possibilities for future cancer treatment as part of this year’s Arendalsuka. Come and join our event there.

Or simply follow our live stream on Facebook!

New report on Norwegian health industry

Will the Norwegian health industry become a so-called growth industry? What kind of position can a Norwegian health industry claim internationally? 

These questions are at the core of a new report on the Norwegian health industry, published by Innovation Norway. According to Innovation Norway, health is one of six areas of opportunity for Norwegian export growth.

The Norwegian health industry is already increasing. It had a 57 billion NOK turnover last year, of which 23,6 billion in exports, mostly from companies producing in Norway.

New report out
Oslo Cancer Cluster, Norway Health Tech, Legemiddelindustriforeningen, Innovation Norway and the Norwegian Research Council have recently finished a feasibility study on the strategic position of a Norwegian health industry. 30 key position holders within the industry have contributed to the report, giving their views on how Norway can build a stronger health industry.

READ THE REPORT (in Norwegian)

Questions to be answered
How should we approach an expansion of the industry? What will become increasingly more important for this industry in the years to come? How should the public system contribute?

These questions will also appear in our meeting about the Norwegian health industry in Arendal, 16 August. Please join us in Arendal!

Previous reports
Menon Economics has previously published reports about the Norwegian health industry, commissioned by Oslo Cancer Cluster, Norway Health Tech, Legemiddelindustriforeningen, Innovation Norway and the Norwegian Research Council. Their latest report was published in April 2018. That report is available here (in Norwegian).

Meet Us at Arendalsuka

In mid-August Oslo Cancer Cluster travel to Arendal to put focus on cancer treatment and innovation.

Arendalsuka is a week of political discourse and interaction, and Oslo Cancer Cluster want to highlight several cancer related topics we find important. In total, we are hosting or co-hosting three different events!

On Wednesday August the 15th we are involved in two events. We start off early at Clarion Arendal by looking in to the glass bowl and predicting the future of cancer treatment. In the afternoon we discuss if digital technology can aid patients recovering from cancer treatment. Finally, on Thursday we ask: How can we promote the Norwegian Health Industry? What should we do and what should we avoid?

Browse our event in Norwegian.

Or better: Come and join us at Arendal!

New Chairman at OCC

Øyvind Kongstun Arnesen is appointed new chairman at Oslo Cancer Cluster (OCC).

On a recent General Assembly, Oslo Cancer Cluster elected Øyvind Kongstun Arnesen as new chairman after a unanimous vote. He takes over after Henrik Lund who opted not to stand for re-election after four years in the position.

Øyvind is currently CEO at Ultimovacs, a member of Oslo Cancer Cluster with its own cancer vaccine technology. Read more about Ultimovacs here.

— We look forward to having Øyvind as our chairman. He is very knowledgeable and enthusiastically committed to oncology research and development. His medical background combined with biotech entrepreneurship and years in the pharmaceutical industry, will help elevate Oslo Cancer Cluster to the next level, says General Manager of Oslo Cancer Cluster Ketil Widerberg.

Thank You Henrik
Oslo Cancer Cluster thanks Henrik Lund for his four years chairman and many years on the board. Oslo Cancer Cluster has during his years as chairman grown both at home and internationally. Widerberg thanked Henrik for his commitment to OCC during his tenure:

— Thank you for your commitment to Oslo Cancer Cluster all these years. During your time as chairman we have undergone important changes, and now have a solid foundation to build upon. The goal is to be the leading European center of cancer innovation.

Event invitation for INVEN2Pitch

Inven2-Pitch: Morgendagens kreftselskaper

Er du investor eller gründerspire? Vi trenger deg!

Norge har en sterk tradisjon innen kreftforskning i verdensklasse. Basert på denne fremragende forskningen har selskaper som Algeta, Nordic Nanovector, Ultimovacs og Zelluna Immunotherapy blitt spunnet ut. Og det kommer mer.

Inven2 inviterer investorer, gründerspirer og andre interesserte til en presentasjon av de mest lovende nye prosjektene innen kreft i Oslo Cancer Cluster Innovasjonspark den 12. juni kl. 14.

Dette er alle spennende innovasjonsprosjekter som når de går over i kommersiell fase om kort tid vil trenge finansiering og gründere. Er du gründer, investor eller helseinteressert, er dette en unik sjanse.

Bli med å skape morgendagens helsenæring!

12. juni kl. 14-16 | Oslo Cancer Cluster Incubator (OCCI)

Meld deg på her!

Prosjektene som skal pitches:
  1. Tankyrase inhibition in cancer therapy
  2. A new drug against Acute Myeloid Leukaemia (AML)
  3. Autologous anti-CD20 TCR-engineered T-cell therapy for recurrent Non-Hodgkin’s Lymphoma
  4. Lymphocyte Booster – Lymphocyte boosting growth medium for Adoptive Cell Therapy
  5. CD37 CAR for cancer immunotherapy
  6. IL-15 Immunotherapy – Fusion protein for immunotherapy of solid tumors
  7. Backscatter: A communication technology enabling colon-cancer screening.

Oslo Cancer Cluster – GDPR Privacy Terms

What are you saying “YES” to?

When you register to receive information from Oslo Cancer Cluster, or register for an event:

  • The system requires you to provide contact information such as “name” and “e-mail address”, and in some cases “affiliation”.

When you reaffirm your registration by clicking “yes” from Oslo Cancer Cluster’s newsletter:

  • Your previously registered information, will be renewed as a registration.

In both these instances, the information is used to reach each subscriber via newsletter, and in some cases other information from Oslo Cancer Cluster we regard as useful for the recipients

Oslo Cancer Cluster (OCC) want to demonstrate our commitment to privacy. The following discloses our information gathering and dissemination practices for personal data at OCC.

  • We do not sell individual customer names or other private profile information to third parties. We furthermore do not share information provided by Registered Users with our partners or any other third party. All information provided by Registered Newsletter Users will be stored in accordance and for as long as required by applicable laws.
  • We will follow GDPR regulations.

Further information concerning the terms and conditions of use and data privacy can be found at Datailsynet HERE.

What is GDPR?
GDPR stands for The General Data Protection Regulation. GDPR is a regulation in EU law on data protection and privacy for all individuals within the European Union. It also addresses the export of all personal data outside the EU. It basically means that all international companies operating in the EU need to comply and secure personal data sufficiently.

Learn more HERE.

The Future Norway: Ketil Widerberg on Tech and Cancer

Our General Manager Ketil Widerberg visited the podcast People creating the future Norway (De som bygger det nye Norge) hosted by Silvija Seres and Oslo Business Forum.

Ketil and Silvija discussed important issues like: Is it possible to make cancer a chronic disease? And how do you really create medicine that is tailored for each individual? And many other important topics. Have a listen!

Listen to the podcast HERE (In Norwegian).

Enjoying a Meteoric Career as a Researcher

Former Ullern upper secondary school student Simone Mester is enjoying a meteoric career as a researcher. Her research is aimed at making cancer drugs more efficient by getting them to stay longer in the body. But how did she end up here, and what advice does she have for upper secondary school students who are about to choose what educational path to take?

Simone Mester is 25 years old. Before studying molecular biology and being taken on as a researcher at the University of Oslo (UiO), she took natural science subjects at Ullern upper secondary school. She was one of the first students to be offered a place on a work placement programme under the auspices of Oslo Cancer Cluster. Her placement was at the Institute of Clinical Medicine where she worked at both the Department of Tumor Biology and the Department of Radiation Biology.

But choosing molecular biology after upper secondary school was not an easy choice.

‘I felt unsure at the time. I remember thinking a lot about what jobs would be available to me after studying molecular biology. At the same time, the work placements had given me an idea of what it means to work as a researcher. Without that, I would never have dared to choose molecular biology, but would have gone for medicine instead,’ says Simone Mester.

Inspired by Inger
Now, just five years after celebrating her graduation from Ullern, Simone is a researcher at the University of Oslo (Department of Biosciences and Department of Pharmacology) and at Oslo University Hospital (Department of Cancer Immunology) as a member of Jan Terje Andersen and Inger Sandlie’s research group. As chance would have it, Professor Inger Sandlie is a member of the board of Oslo Cancer Cluster and is one of the founders of two enterprises working on a new form of cancer treatment.

‘Inger was one of my lecturers when I took my bachelor’s degree, and I found her very inspiring. She has won several innovation awards and started up businesses. I like working on research that is complex but understandable, and that can form the basis for new and better treatment for serious illnesses,’ says Simone.

So it is no great surprise that Simone’s research project focuses on developing better cancer drugs that stay longer in the body. This enables the drug to kill more cancer cells at lower doses, which means that there are also fewer side effects. This was also the focus of her master’s thesis.

‘My master’s thesis was well received. It opened the door to Inger Sandlie and Jan Terje Andersen’s research group, but chance played a part as well, of course,’ says Simone modestly.

Chance always plays some part, but Simone has no reason to be modest. She is not where she is today as a result of chance alone.

Do not choose the most prestigious fields
Simone is very happy that she did not choose a subject that is better known than molecular biology in terms of status and job opportunities. She encourages upper secondary students to think about what they are good at and what they think is fun when making the hard choice of which direction to take after upper secondary school.

‘I feel that it’s a general problem that so many young people choose high status professions such as law, engineering and medicine, rather than looking at other possibilities. When I tell people that I’m a molecular biologist, they don’t understand what it is, and they don’t ask either, but that’s OK. It’s more important to choose something you think is fun, because that means you will also perform better, even though it’s hard work,’ says Simone.

She adds:

‘And if you think upper secondary school is tough and that you have to work really hard to get good grades, then I can tell you that university is much tougher. That means that it’s really important that you choose a field you’re passionate about,’ says Simone.

She encourages students to talk to their subject teachers about possible career choices.

‘I had several good biology teachers at Ullern, and was considering studying biology. However, Ragni, one of my teachers, was adamant that I should focus on molecular biology since I was particularly good at it,’ says Simone.

She has never regretted her decision. When we ask her what fascinates her about molecular biology, she says:

‘I’m working on such a tiny scale with things like DNA, protein and cells, the building blocks for all life. It’s like a different universe, and, in the beginning, it was hard to understand how I fitted in,’ Simone says.

But after listening to Inger’s lectures and later becoming part of her research team, she is sure about her decision.

The SPARK Winner And the Prime Minister
Simone completed her master’s degree in 2017, by which time the university had already granted her application for innovation funds to continue her research. In addition, she is the youngest person at the university to be accepted for ‘Spark Norway’, an innovation programme at UiO:Life Science, which Oslo Cancer Cluster has helped to establish.

‘My SPARK project is an extension of the project I began during my master’s studies. Of all the proteins I’ve created, I’ve found one with the ability to stay in the blood stream for a very long time. That means that it doesn’t break down so quickly. At the same time, a lab in the Netherlands has developed several new antibodies that can effectively kill cancer cells. The problem is that the antibodies break down quickly in the body. So now we’re trying to combine these antibodies with our unique technology, in the hope of tailoring the next generation of cancer drugs,’ says Simone.

The aim of the SPARK innovation programme is to give young researchers a chance to further develop their own ideas in health-related life science for the benefit of patients and society at large. And Simone’s project really fits the bill in that respect, something a lot of people agree with.

When Prime Minister Erna Solberg opened the new incubator ShareLab at the Oslo Science Park in March this year, a competition was organised between the SPARK participants. And guess who won?

None other than Simone.

Ragni Fet on Simone:

Ragni is a biology teacher at Ullern upper secondary school. Simone Mester was one of her students for all three years: first in natural science and then in biology for two years. Simone was part of Ragni’s first cohort of students nine years ago.

‘I remember Simone very well, and we have actually been in touch after she graduated from Ullern upper secondary school. She struggled a bit to stay motivated while taking her bachelor’s degree in biology, and I talked to her about how that was completely natural and that things would improve at master’s level,’ says Ragni.

And it’s safe to say that the pep talk worked.

Ragni was also the one who recommended Simone to study molecular biology.

‘Many upper secondary school students tend to have a too narrow perspective when it comes to choosing an education and profession. I’m trying to expand their horizons, and I strongly recommended that Simone study molecular biology rather than medicine, which she was considering at the time,’ says Ragni.

She is both pleased and proud that Simone is doing so well as a researcher at the University of Oslo, but she is not the least bit surprised.

‘Simone was very good at biology and really grasped the subject in her final year. I seem to remember giving her the best grade in biology. It’s great that she’s doing so well now. I’m really rooting for her. She has everything it takes to succeed, from intelligence to social skills and work capacity,’ says Ragni.

She is really pleased that the work placement offered to Ullern students was the decisive factor in Simone’s decision to go for a career as a researcher.

‘Students and society at large are very under-informed about what research is and what being a researcher entails. When students praise each other, they say “What are you, a brain researcher or something?”, so they clearly think you have to be extremely clever to become a researcher. Most people find research diffuse, so it’s great that some students can go on work placements and experience first-hand what research is and what a researcher does,’ says Ragni.

Creating One Cancer Vaccine Per Patient

Oslo Cancer Cluster member Vaccibody is making headway with their cancer vaccine technology. Now they are ready with clinical trials involving 40 patients in Germany, the first patient is already enrolled.

 

Neoantigens Reveals Cancer Cells
Cancer is famous for its ability to deceive, appearing to the immune system as normal tissue while wreaking havoc on the body. But what if cancer cells could be revealed with subtle but unmistakable characteristics that revealed their true nature?

This revealing clue exists and is called neoantigens, which are mutated (or changed/altered) proteins found only in cancer cells. This is the science behind what Vaccibody and Agnete Fredriksen is currently doing, working to develop vaccines that use neoantigens to help patients’ own immune systems recognize and fight cancer tumors.

— I dare to say that this is quite unique. Each vaccine is thoroughly customized for each individual cancer patient. One vaccine per patient! What we do is conduct biopsies and blood tests to reveal each patient’s unique set of neoantigens and with our technology we have the ability to create a potent individualized vaccine in a relatively short time at reasonable cost, says Agnete B. Fredriksen, President and Chief Scientific Officer at Vaccibody.

Extra Effective With Checkpoint Inhibition
The Vaccibody researchers analyze individual tumor genomes and the patients’ immune systems to select an optimal mix of neoantigens.

— We can do that in a few days because of modern technology. Then we monitor and record the changes we think the immune system will react to and include them in the personalized vaccine. The neoantigen technology is then combined with so called checkpoint inhibitor therapy, which stops tumors from suppressing immune-system activity — to make the vaccine extra effective.

With this personalized medicine approach, each patient receives a unique DNA vaccine, in combination with standard of care checkpoint inhibitor therapy.

Vaccibody has also reached the front page of VG! Read the story here. (In Norwegian)

Clinical Trials in Germany
In the upcoming German clinical trials the vaccine will be tested on patients with locally advanced or metastatic non-small cell lung cancer, melanoma, renal, bladder or head and neck cancer.

— Our technology is very flexible and it can record a number of different changes. The vaccine is therefore applicable as a treatment for many different kinds of cancers. The ones included in the trial are chosen because they contain a high number of mutations and changes creating a good basis to create a neoantigen vaccine.

During the trial Vaccibody will check if the vaccine is safe and without side effects.

— We really think it is based on previous experience with this platform! And we will of course check if the vaccine has the expected immune response and investigate signs of clinical efficacy, says Fredriksen.

The Health Industry Is On the Rise

For the third year running, Menon Economics presented a report on “The Value of the Norwegian Health Industry”. The conclusion: Both the industry and exports are growing substantially. We see an increase in export income, research and innovation levels.

The report was launched at “Næringslivets Hus”, the home of NHO, and gathered a full house with people from the industry, public sector, press and the political sphere present.

Indications Verified: The health Industry is Growing
The report showed that export income is increasing and are estimated at 23.5 billion NOK, an estimate that is viewed as conservative. The report also finds an increase in private funds for research. In 2017, research and development funds originating from the private sector was in total 2.6 billion NOK.

In addition, the report notes an increase in start-up companies and innovation levels, but emphasizes a lack of available funds to realize projects in vulnerable phases.

The report’s main focus is the industry’s value contribution, which means contribution to BNP, jobs creation and tax income. However, in social economic terms, the report claims at present that as a benefit for society, the health industry is more important for the population and healthcare sector as a whole, rather than for economic growth alone.

Read the report. Download it here. (In Norwegian)

Can Help With White Paper
State Secretary Magnus Thue visited the launch of the report and talked about the upcoming White Paper on the Health Industry.

— Being healthy is a priced asset both for the individual and the society as a whole. This government prioritizes health and we want to create good working conditions for the industry.

And he added: – We will use this report as a backdrop when we are working on our White Paper.

We Have to Use Our Strengths
General Manager of Oslo Cancer Cluster Ketil Widerberg, is also happy for the report and that the health industry is on the rise.

— It means more and better treatment for people who need it!

However, he emphasized the importance of realizing that the health industry business is a global competition.

— This is an international competition and if we are to succeed, we have to succeed internationally! We need to use our strengths to position ourselves: That means putting our health data from our health registries to good use! This will prove beneficial both for industry and patient.

Behind the report is a consortium of contributors to the Norwegian Health Industry: NHO, Abelia, NHO Service, Oslo Cancer Cluster, Norwegian Smart Care Cluster, Inven2, The pharmaceutical Industry (LMI), Innovation Norway, The Norwegian Science Council, SIVA and Norway Health Tech.

Bekjemper kreft med gentilpasset behandling

Gentilpasset behandling har siden begynnelsen av 2000-tallet blitt beskrevet som et av de nye, viktige våpnene som kan bekjempe kreft.

Hør forsker Hege G. Russnes og professor Anne Hansen Ree, her fra Cancer Crosllinks i januar i år, fortelle om deres forskningsprosjekt MetAction, og hvordan de tar i bruk gentilpasset behandling for å gi et behandlingstilbud til en pasientgruppe som har manglet det tidligere. Nå avsluttes prosjektet og du kan høre her hvorfor forskerne synes det er både feil og trist.

Forskningsprosjektet, som varte fra 2014 til 2017, ble ledet av Ree, kreftforsker og professor Gunhild Mari Mælandsmo, molekylærpatolog og lege Hege Russnes ved Oslo universitetssykehus, samt kreftkirurg og lege Kjersti Flatmark.

I forrige uke fikk de også forsiden på VG. Og det med god grunn: Ved bruk av genterapi og tverrfaglig kompetanse gir de hjelp til nye pasientergrupper og løfter norsk kompetanse innen gentilpasset behandling.

Les saken i VG her.

HPV program: Perfect Use of Our Health Goldmine

Since 2009, The Cancer Registry of Norway has made use of health data in groundbreaking ways. They have taken the Nordic HPV vaccine program and turned it into a unique study using real world data. The project manager Mari Nygård hopes the study can inspire others to use health data in a similar ways and dig up ‘health treasures’ important to public health.

How the Project Started
HPV stands for “human papillomavirus” and is the most common sexually transmitted infection. The majority of those infected are not aware of this and most infections are harmless and do not give any symptoms. However, some HPV types can cause cancer and are called high risk HPV. The most well known being cervical cancer.

In the 2000s, the pharmaceutical company MSD developed the first vaccine to prevent the HPV virus and the cancers caused by it.

However, when the vaccine was approved, the US Food and Drug Administration (FDA) demanded that health data monitoring the effect and side-effects of the vaccine, had to be collected for 15 years because that’s the time it takes for a HPV infection to cause cell change and cervical cancer.

This led to MSD contacting the Cancer Registry. Together they, with other Nordic research communities, started monitoring the effect of the vaccine in Norway, Denmark, Sweden and Iceland.

Image: The Cancer Registry

Image: The Cancer Registry

Uses Real World Data
Mari Nygård, head of the Cancer Registry’s HPV-related epidemiological research unit, has managed the project from the beginning, and is proud of their contributions thus far.

— We monitor the effect of the vaccine by using real world data. Among other things, we are using health registries to follow up 10,000 participants for 15 years. Less than five per cent have dropped out so far. That is sensational. The study is really unique in a global context, says Nygård.

The goal of the study is to map side effects and endpoints. Endpoints can be vaccine-induced immune responses, precursors to cervical cancer or other types of cancer caused by the HPV included in the vaccine.

The researchers used the health registries to gather information regarding the endpoints and combined this with obtaining biological material from clinical bio-banks for virologic and pathomorphological analyses. In addition, blood samples were collected from the participants at regular intervals to test for vaccine-induced HPV antibodies.

In addition to several publications and a general competence boost regarding HPV for the Cancer Registry, the research has received great international recognition.

Important to Collaborate on Health Data
Nygård hopes that the HPV program can inspire others to conduct similar studies using health data.

— There is currently a great interest in health registry research, and we know that the information stored is a potential goldmine. Our collaboration with MSD proves that it is possible to find “health gold” beneficial to public health, and the industry can play an important part creating these solutions, says Nygård.

The pharmaceutical company MSD agrees, and is very pleased with the collaboration.

— The Cancer Registry has played an important global part in the development of MSD’s HPV vaccines. We are proud to have contributed to promoting the national registries during the collaboration, and believe this can be an example of how Norwegian data can be used in future drug development and drug follow-up, says Elen Høeg, responsible for vaccines at MSD.

Inven2’s Important Contribution
Inven2 has also been an important contributor to the project. The company has been responsible for getting the first agreements between The Cancer Registry and MSD in place.

— Agreeing on the first contract with MSD was a complex process, but we got there with Inven2’s help, says Nygård.

Kommentar: Jeg deler, altså arbeider jeg

Kommentaren stod på trykk i Finansavisen 26.02.2018 og er skrevet av Ketil Widerberg, leder i Oslo Cancer Cluster og Nard Schreurs, direktør e-helse i IKT-Norge.

Vi må snakke om hvordan vi skal forvalte våre helsedata før det er for sent.

På jobb får vi betalt for det vi deler og gir av tid, kreativitet eller kompetanse. Hva med alle data vi deler?

Da internettet og senere smarttelefonene kom, valgte de fleste å gi sine data gratis til tjenestetilbyderne i bytte mot nye tjenester. Google vet hva vi søker på. Selskapets søkealgoritmer er enestående og hjelper oss å finne frem i den uoverkommelige informasjonsjungelen. Google får mye data om oss, og det tjener de gode penger på. Det samme gjør Facebook, banker og butikker. De tjener gode penger på data som vi gir fra oss gratis.

Så langt har det vært forbrukerdata som vi selv velger å gi bort. Nå står vi foran en ny bølge digitalisering der helsedata slippes fri. Apper måler vårt blodtrykk og våre bevegelser. I Storbritannia har myndighetene frigitt tilgang til genetiske data fra en halv million mennesker. Formålet er å utvikle bedre tjenester og skaffe forskning som kan gi oss alle bedre helse.

Er “forbrukermodellen” der vi gir dataene gratis fra oss den beste måten å håndtere dette? Eller finnes det måter vi som innbyggere og som samfunn kan oppnå høyere verdiskaping og bedre helse?

Enkelt sagt er det tre modeller som utpeker seg. La oss presentere dem kort, uten å gå nærmere inn på viktige dimensjoner som personvern og samtykke.

Første modell er fri bruk av data, som i forbrukermodellen. Helsedata frigjøres for alle som ønsker å drive innovasjon, uansett hvor de kommer fra, og i utgangspunktet også uansett hvilket mål de måtte ha. Litt som vi har gjort med kart, GPS, eller værdata. Fordelen med denne modellen er innovasjon som bidrar til et bedre samfunn og økonomisk virksomhet. Vi gir fra oss data for å få bedre tjenester. Ulempen er at det ikke er gitt at verdiskapningen skjer i Norge eller at verdien tilfaller de som gir fra seg data.

Andre modell er å låse inn dataene og be om en gjenytelse for å få bruke dem. Det kan være penger, lisens eller krav at dataene er knyttet til norske virksomheter. Fordelen er at globale teknologi- og pharmaselskaper skal dele verdien våre helsedata representerer. Ulempen er at selv om det ikke er feil at man skal dele verdien, vil modellen i praksis sannsynligvis ikke fungere. Det er få eksempler der innelåste data økonomisk kan konkurrere med frie data.

I den tredje modellen fungerer data som arbeid. Fordelene ved en slik modell er mange. Når vi bruker vår tid, kreativitet eller kompetanse får vi betalt for det. Hvorfor skulle vi ikke få betalt når vi generer data? I et heldigitalisert samfunn, der dataene om oss og fra oss er sentrale verdier, er det unaturlig at de brukes uten at vi får en økonomisk ytelse for det. Som eksempel er det mulig å tenke at på en blockchain-basert plattform knyttes helsedata opp mot individuelle kontoer. Hver gang dataene brukes får vi en (mikro)betaling. Slik får både vi som individer og dermed også det norske samfunnet betalt for det.

Vi ser at det er en del ulemper med siste modellen også, og vi tror ikke at det er det endelige svaret. Det vil derimot være fornuftig å ta en bredere samfunnsdebatt om hvordan vi skal forvalte våre helsedata, hvem som skal eie dem, og hvordan de skal bidra til verdiskapning, før det er for sent.

 

Photocure Expansion Accepted by FDA

Oslo Cancer Cluster member Photocure recently announced that the U.S. Food and Drug Administration (FDA) has accepted an expansion of the bladder cancer detection system “Cysview”.

The FDA has accepted a supplemental New Drug Application (NDA) for “Cysview”. Photocure, the Norwegian company behind the drug-device system, has now been allowed to expand the system to include “Flexible Cystoscopes”, these are used in the ongoing surveillance of patients with bladder cancer. According to Photocure, this is the only combination of drug and device approved for the detection of bladder cancer.

How Cysview Detects Cancer
Cysview is a method of detecting bladder cancer using photodynamic technology and is the only FDA-approved product for use with blue light cystoscopy, where a device called a cystoscope is used to detect cancer inside the bladder.

Cysview is injected into the bladder through a catheter. It accumulates differentially in malignant cells. When illuminated with blue light from the cystoscope, the cancerous lesions fluoresce red, highlighting the malignant areas.

An important Tool
Bladder cancer is one of the most expensive cancers to manage, accounting for approximately 3.7 billion USD in direct costs each year in the US. Being able to expand “Cysview” with flexible Cystoscopes will substantially decrease costs and give patients a more effective treatment. Good news for both company and bladder cancer patients.

— This approval is an important milestone for Photocure. With 1.2 million surveillance cystoscopies performed annually in the U.S., this represents a significant opportunity for the company and allows us to bring solutions to current clinical challenges, says Kjetil Hestdal M.D. Ph.D., President and CEO, Photocure.

The expanded indication includes the combination of “Cysview” with the KARL STORZ PDD Flexible Blue Light Videoscope System. The approval also expands the indication for the current rigid setting by including the detection of the pre-cancer state carcinoma in situ (CIS) in patients, as well as the repeated use of Blue Light cystoscope with Cysview.

 

About Photocure:

Photocure, the world leader in photodynamic technology, is a Norwegian based specialty pharmaceutical company. Photocure develop and commercialize highly selective and effective solutions in several disease areas such as bladder cancer, HPV and precancerous lesions of the cervix and acne.

Their aim is to improve patient care and quality of life by making solutions based on Photocure Technology™ accessible to patients worldwide.

Photocure was founded by the Norwegian Radium Hospital in 1997. Today, the company, headquartered in Oslo, Norway, has over 60 highly skilled employees and operates in Norway, Sweden, Denmark, Finland and the United States.

Welcome to Our New Members

Entering 2018, Oslo Cancer Cluster welcomes four new members to the fold. Cellmover, Bryn Aarflot, Kuehne + Nagel and Mercuri Urval are our new cluster members.

 

The Importance of Getting There
Founded in 1890, Kuehne + Nagel operates from 9 locations in Norway, offering tailored logistics solutions for different industries, including for healthcare and pharmaceuticals shipments.  Simply put, their expertise is getting things where they are supposed to go – safely and in compliance. They are one of the leading logistics providers in the world, with over 74 000 employees and 1 300 offices spread all over the globe.

For Oslo Cancer Cluster members, Kuehne+Nagel’s a special competence can be applied to help us reach our shared goal of accelerating the development of innovative cancer treatments.  They are CEIV-certified (IATA airfreight pharmaceutical), and WHO GDP (good distribution practices) compliant for pharmaceutical products and specialized in the distribution of pharmaceutical and healthcare shipments. For example, biotechs can have very specific requirements when it comes to transport of products. In many instances, it is crucial to transport biological tissue at a certain temperature under certain conditions.

Protecting and Developing Innovation
Another company rich in tradition is the Norwegian firm Bryn Aarflot. They are a full-service Intellectual Property (IP) firm with a total of 45 people located in central Oslo. Their diverse IP practice areas include strategic counselling, intellectual property creation, capture and clearance through to protection, commercialization, enforcement and maintenance, contract drafting and negotiations, as well as IP litigation.

Their approach is to get to know the client’s business and understand their technology, products and goals, and counsel them on how to utilize the intellectual property to generate revenue and increase market power. This is a positive addition to the Cancer Cluster community, where biotechs innovate on the basis of their own intellectual property.

Helping Start-Ups
Cellmover is truly a company that goes to the core of what we do here at Oslo Cancer Cluster. It’s a Biotech start-up, led by Oslo University Hospital cancer specialist Marit Inngjerdingen.  Cellmover’s goal is to develop immunotherapeutic products directed at the treatment of cancer. They specifically design products to enhance survival, activity, and targeting of immune cells used for cell therapy.

As a Oslo Cancer Cluster member, Cell Mover can benefit from all the help our cluster can provide. In the cluster environment, it is easier to meet and learn from companies with similar technologies, or it could prompt creative ideas from companies working with something quite different.  The benefits from learning the necessary “know-hows” to turn a start-up into a successful business and develop cancer treatment.

Do You Need Help Recruiting?
If you work with cancer research, there is one thing you certainly need and that is competent people. Mercuri Urval exists to secure that organizations always have the right people in place to produce the best possible result. They are a leading – Stockholm based – global Executive Search, Professional Recruitment and Talent Advisory firm. One of their fields of expertise is recruitment within the Life Sciences. For more than 50 years Mercuri Urval has recruited human resources for the healthcare industry.

 

 

 

 

 

10th Cancer Crosslinks: Precision Treatment Reviewed

For the tenth time the cancer experts gathered to share knowledge and ideas at Oslo Cancer Cluster Innovation Park. Cancer Crosslinks 2018 presented a diverse program covering themes from immuno-oncology to cachexia, to big data.

 

Cancer research is changing rapidly. Immunotherapy and precision medicine has revolutionized cancer treatment. This year’s Cancer Crosslinks took a closer look at developments over the last decade, and highlighted “Precision Treatment: Exploiting Recent Advances – Fast and Furious?”.

Weber Gazed into the Crystal Ball
The leading immunotherapy expert professor Jeffrey S. Weber visited Cancer Crosslinks for a second time. Weber has worked with immunotherapy for 30 years.  He provided an overview on recent advances. He shared new data showing that the combination of a certain vaccine and a type of immunotherapy called Checkpoint inhibitors, are especially effective against cancer. He also gazed into the crystal ball and made predictions on the future of cancer treatment. Weber is optimistic and thinks there are several promising combinations of precision treatments on the horizon.  He believes we can hope for a survival rate of 70-80 percent for people with certain cancers.

A Fiber Diet is Recommendable
Professor Laure Bindels from Belgium explored the theme of Microbiome, Cancer and Cachexia. Diet can be an important tool to fight cancer and cancer symptoms. Her research on mice indicates that changing to a fiber-rich diet can prevent undernourishment and increase the survival rate for cancer patients.

Hege Russnes and Anne Hansen Ree introduced us to the MetAction project where they conduct extended personal diagnostic testing to give cancer patients better and more effective treatment.

From the USA, we were introduced to precision treatment of gynecological cancer from Douglas A. Levine.  He was followed by Professor Andreas Engert, who raised the hot topic of establishing joint European guidelines for treatment across Europe for hematological cancer.

A Big Maybe to Big Data
The last speakers of the day where Assistant Professor Marcela Maus from Harvard Medical School, and Elisabeth Wik and Marc Vaudel from the University of Bergen. Professor Maus explained the use of CAR T- cells in cancer treatment. CAR-T Cells are T-cells with modified receptors to make them more effective against certain diseases, in this case cancer.

Elisabeth Wik and Marc Vaudel, with backgrounds from cancer research and computer science, discussed the use of big data in cancer research and treatment. Will big data revolutionize cancer treatment? The answer is maybe. We don’t know yet, it has potential.  We need to continue exploration, research, and collaboration to find out.

Download the Presentations
For those of you who missed the event or would like to revisit:

You may watch most of the presentations here.

You can download presentations from the meeting here:

Opening and Welcome with Jutta Heix from Oslo Cancer Cluster and Anne Kjersti Fahlvik, Executive Director Innovation, The Norwegian Research Council.

Jeffrey S. Weber. Opening Keynote: Cancer Immunotherapy – The Journey So Far and Where We Are Heading.
Jeffrey S. Weber, Professor, Deputy Director and Co-Director, Melanoma Program, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, USA.

Laure Bindels. International Keynote: The Microbiome, Cancer and Cachexia.
Laure Bindels, Louvain Drug Research Institute, Université catholique de Louvain, Belgium.

Hege G. Russnes and Anne Hansen ReeFrom Feasibility to Utility in Precision Medicine – Experiences from the first Norwegian Study of NGS-Based Therapy Decisions in Advanced Cancer.
Hege G. Russnes, Senior Consultant and Researcher, Oslo University Hospital, Norwegian Radium Hospital, Norway
Anne Hansen Ree, Professor, Akershus University Hospital, University of Oslo, Norway

Douglas A. Levine. International Keynote: Precision Medicine for Gynecologic Cancers – Opportunities and Obstacles.
Douglas A. Levine, Professor, Director of Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center & Head, Gynecology Research Laboratory, NYU Langone Medical Center, New York, USA.

Andreas Engert. International Keynote: Roadmap for European Hematology Research and Hodgkin Lymphoma: (Immuno)therapy, Late Effects and the Way Forward.
Andreas Engert, Professor for Internal Medicine, Hematology and Oncology, University Hospital of Cologne, Germany.

Marcela V. Maus. International Keynote: The Next Generation of Engineered T-cells for Immunotherapy of Hematological and Solid Tumors.
Marcela V. Maus, Assistant Professor, Harvard Medical School & Director of Cellular Immunotherapy, Cancer Center, Massachusetts General Hospital, Boston, USA.

Marc Vaudel  and Elisabeth Wik: Making Sense of Big Data for Oncology Patients – Vision and Reality
Marc Vaudel, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital and KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
Elisabeth Wik, Centre for Cancer Biomarkers, University of Bergen and Department of Pathology, Haukeland University Hospital, Norway

Follow the 10th Cancer Crosslinks: Stream and Program

Thursday January the 18th it’s time for the 10th Cancer Crosslinks here at Oslo Cancer Cluster Innovation Park. Hospital personnel, researchers and everybody interested get together for an update on – and to discuss – the latest within cancer research.

 

This year’s conference will focus on Precision Treatment in cancer research with the headline: Exploiting Recent Advances – Fast and Furious?

Check out the program here.

 

Curida Takover Secures Norwegian Production

To secure Norwegian pharmaceutical production, Oslo Cancer Cluster- member Curida has completed a takeover of Ås produksjonslab AS.

 

Continued Production at Ås
Curida operate in an international marketplace and here the last line of production of pharmaceuticals is mostly taken care of by specialized operators.

«Ås produksjonslab» is a company rich in tradition, it has nine employees and produces many products for Norwegian pharmacies, while also facilitating production on an assignment order basis.

Curida purchase Ås produksjonslab from The Norwegian Apothecary Society (Apotkerforeningen), a union of Norway’s 900 Pharmacies.

However, the lab will continue their production at Ås also after the takeover. And, with a yearly revenue of 21 million NOK, Leif Rune Skymoen, CEO at Curida, believes the takeover combined with the general growth of the company will help balance the budget the upcoming year.

— We are making these strategic moves because Curida gathered 50 million NOK in December by releasing an equal amount of stocks to Canica and Klavness Marine. Furthermore, Investinor was given an option on 25 million NOK worth of stocks, says Head of the Board of Directors, Per S. Thoresen at Curida. Investinor will decide at the end of January.

Securing Norwegian Expertise
As early as December Thoresen informed that part of the money gathered in the end of the year emissions would be used to buy production facilities.

And CEO Per T. Lund at The Norwegian Apothecary Society is also happy with the takeover. He says in a press release that this will contribute to a strong base of Norwegian pharmaceutical production. Additionally, it secures Norwegian Pharmacies delivery of pharmaceuticals in strong demand.

— We are strengthening Norwegian pharmaceutical production and securing important expertise, Thoresen explaines.

Curida is not only securing Norwegian production, they have also become important for Norwegian war time infrastructure. Late 2017 Curida signed a letter of intent with the Norwegian Armed Forces. They now supply raw materials and are responsible for pharmaceutical manufacturing in situations of emergency preparedness, which means in case of conflict, state of war or general emergency.

Fremtidens kreftbehandling – ta med egne data!

Les kronikken, fra 21.12. 2017 i Aftenposten, om hvordan vi bør forme våre nye sykehusbygg av Ketil Widerberg.

Den nye klinikken på Radiumhospitalet må ta helsedatarevolusjonen på alvor.

Radiumhospitalet ved Oslo universitetssykehus får nytt klinikkbygg. En god nyhet for kreftpasienter, som blir enda bedre hvis pasientene selv får bidra med data om egen helse.

Et nytt sykehus må bygges slik at data enkelt kan samles inn og hjelpe pasientene.

La også appene fortelle
Hva er så helsedata? Se for deg en lege med stetoskop rundt halsen. Leger har i «alle år» brukt stetoskopet til å registrere informasjon fra kroppens indre; høre om hjerterytmen er normal eller om lungene surkler. Stetoskopet samler helsedata og hjelper frem riktig diagnose ved å innhente skjult informasjon.

I dag har vi heldigvis enda flere hjelpemidler til å samle inn helsedata.

Og Helse-Norge samler inn data som aldri før. Informasjon kan komme fra analyse av blod og spyttprøver eller undersøkelser som EKG, MR og CT. Forkortelsene er mange, instrumentene enda flere.

Prøver, testing og overvåking gjennomføres i økende grad av digitale verktøy. Dette gir behov for nye effektive møteplasser. Digitale møteplasser der flere typer kreftleger kan møtes for å diskutere behandlingen av en pasient uten å møte opp fysisk. Digital infrastruktur vil kunne effektivisere og forbedre hverdagen til våre kreftspesialister betydelig.

Det pasienten selv forteller, er mange ganger også uvurderlig for å fastslå diagnose og behandling. I dag registreres presis informasjon om vår hverdag på ulike private apper via mobiltelefoner. Helsepersonell får dermed vite mye mer om pasienten og kan legge til rette for bedre pasientoppfølging og behandling.

Data-arkitektur
Hvordan helsedata samles inn og tas i bruk må endres!

Det tas millioner av blodprøver på et sykehus, og god sykehusarkitektur kan bidra til bedre innsamling av blodprøver og biologisk materiale. Mange tradisjonelle sykehusprosesser er allerede automatisert, og sykehusarkitekter må ta hensyn til hvordan slik ny teknologi endrer arbeidsflyt og behov.

Vi har allerede nødvendig teknologi for digital rapportering, vi må bare ta den i bruk

Og videre, hvordan skal dataene kategoriseres og lagres? I dag registreres ofte samme data manuelt av lege og sykepleier flere ganger. Dette er frustrerende for pasienter og helsepersonell, i tillegg til at det kan være utfordrende for konfidensialitet, kvalitet og tilgjengelighet.

Slik trenger det ikke være. Vi har allerede nødvendig teknologi for digital rapportering, vi må bare ta den i bruk. Helsedata vil også hjelpe sykehuslogistikken. Innfører vi elektronisk sporing av pasienter, kan vi se hvor pasienter, utstyr og personell er til enhver tid. Det vil forenkle behandlingsplanlegging og forhindre mye unødig løping i gangene.

Ikke skuff statsministeren!
Sykehus i Norge fungerer godt, men den nye klinikken må ta helsedatarevolusjonen på alvor. Det lar seg gjøre. Og Erna Solberg er enig. På IBM-konferansen i november sa hun: «Pasientdata skal gå fra lagrede data til aktivt å benyttes som beslutningsstøtte.» Til alle beslutningstagere: Ikke skuff statsministeren! Bygg et bygg som utnytter helsedata best mulig. Pasientene vil takke dere.

Her finner du artikkelen på Aftenposten sine egne sider.

Breakthrough Agreement for Phoenix Solutions

A new exciting collaboration among two Oslo Cancer Cluster members has been initiated. GE Healthcare has agreed to be the manufacturer of the target drug delivery platform ACT, made by Phoenix Solutions.

Early Christmas Present
As an early Christmas present to each other the two companies announced that they had signed an agreement securing manufacturing for ACT, short for Acoustic Cluster Therapy, a technology platform for targeted drug delivery. CEO at Phoenix Solutions, Per Sontum, emphasized the importance of gaining a manufacturer that had experience with similar products.

“We are excited to sign this agreement and get GE on board as contract manufacturer of our product. With more than 20 years of experience producing Sonazoid and Optison, GE`s Oslo organization is the world leading site for the manufacturing of this class of pharmaceuticals.”

From GE`s Womb
The collaboration, however, is not totally out of the blue. Phoenix Solutions sprung out from GE Healthcare in 2013. GE`s General Manager for Norway, Bjørn Fuglaas believes this tie between the two companies is an advantage:

“We are very pleased that Phoenix has chosen to work with GE for this project, which is in line with the expectations we had when the company was spun out of GE in 2013. This is an area of interest and we believe GE to be uniquely positioned in this field given existing and strong capabilities within production of disperse pharmaceuticals, and microbubbles in particular”, he says.

This agreement also secures what is called Good manufacturing practice (GMP) for Phoenix Solutions. Making their product and company a safer potential for investors and further along in their development than time should suggest.

A Very Promising ACT
ACT is a special and interesting targeting device. It is an ultrasound mediated drug delivery system that specializes in beating the vascular barrier. It has a wide range of therapeutically useful applications, but Its primary use being the ability to deliver sufficiently high concentrations of drug to the tumor without contaminating its surroundings. Phoenix thinks ACT is a promising targeting system for pancreatic, liver, triple negative breast and prostate cancers, and has extremely promising pre-clinical results so far.

Oncoinvent With New Lab and Bright Future

The cancer research company and Oslo Cancer Cluster-member Oncoinvent opened this Thursday a brand-new lab and research facilities at Nydalen Oslo. Now they control the whole production line and continue their development of their lead product candidate Radspherin.

A Good Year
2017 has been a good year for Oncoinvent. The company has now relocated and built new office and laboratory facilities, grown from four to twelve employees, and raised new capital. CEO at Oncoinvent Jan A. Alfheim believes that this represents a significant milestone for the company and will enable the company to further develop Radspherin®, a novel alpha-emitting radioactive microparticle designed for treatment of metastatic cancers in body cavities.

And Oncoinvent ends the year in fashion by opening brand new laboratory and research facilities. A lot of interested people came to tour the new facilities, observing an impressive lab with special infrastructure. Treating radioactivity, and circulating air in a facility that treats radioactive materials, calls for an extra advanced ventilation system.

Lab With all the Facilities
The idea of the new research facility is to be able to contain the whole production line, from research to drug manufacturing, to one location. All this contained in an area of 581 m2.

Creating a modern lab with the capabilities to treat radioactive materials in an active and well populated part of Oslo demands very strict guidelines. The production suites in the facility are constructed to be qualified for Good Manufacturing Practice (GMP) for production of Medical Product Candidates. Systems for purifying and monitoring of air and water quality as well as the removal of any potential radioactivity have been installed to ensure the safety of the operators, population and the environment.

The Production and Research areas of the laboratory will facilitate both the development of the Radspherin program and other discovery projects of the Company.

A Weapon for Precision Medicine
Radspherin® has been shown to cause a significant reduction in tumor cell growth an it is anticipated that the product can potentially treat several forms of metastatic cancer. Oncoinvent is developing Radspherin® as a ready-to-use injectable product that seeks out cancer tumors and destroys them from inside by emitting its radioactive content.

The first clinical indication for Radspherin® will be treatment of peritoneal carcinomatosis, a rare type of cancer that occurs in the peritoneum, the thin layer of tissue that covers abdominal organs and surrounds the abdominal cavity. Additionally, Oncoinvent has lined up a collaboration with European and American clinical research centers for the clinical development Radspherin®.

Four Cluster Companies Get Innovation Reward

Nacamed, Phoenix Soulutions, NorGenoTech and Clever Health are awarded Innovasjonsrammen for good early-stage innovation and collaboration. Innovasjonsrammen is awarded by Oslo Cancer Cluster with money from Innovation Norway. Congratulations!

Important with early financing
Early financing while companies are establishing their business is often limited, but can be crucial to get important projects off the ground. Therefore, Innovation Norway has given Oslo Cancer Cluster 1000 000 NOK to reward excellent innovation and collaboration activity at an early stage. A cluster is all about reaping the benefits of collaboration and Oslo Cancer Cluster has awarded the Innovasjonsrammen-money to four of their promising member companies. Hopefully this will inspire other potential financers to support Norwegian bio businesses at an early stage.

Prize money awarded
NorGenoTech AS     150 000 NOK
Clever Health           100 000 NOK
Phoenix Solutions    500 000 NOK
Nacamed                 150 000 NOK

Hanne Mette Kristiansen from Innovation Norway and Ketil Widerberg from Oslo Cancer Cluster, as well as Bjørn Klem form Oslo Cancer Cluster Incubator, handed out checks for Innovasjonsrammen. Her received by Sergey Shaposhnikov from NorGenoTech, Jon-Bendik Thue from Clever Health, Per Christian Sontum from Phoenix Solutions and Christina Westerveld Haug and Lars Gunnar Fledsberg from Nacamed.

Bringing Together Tech Knowledge
At the 5th floor of Oslo Cancer Cluster the four companies each received their innovation award handed out by Hanne Mette Kristiansen from Innovation Norway, Ketil Widerberg from Oslo Cancer Cluster and Bjørn Klem from Oslo cancer Cluster Incubator.

Ketil Widerberg, General Manager at Oslo Cancer Cluster, thanked Innovation Norway for providing the money and the panel of experts that helped pick the four deserved winners. – This money helps to remove some risk from the early stages of the innovation process, said Widerberg.

Bjørn Klem from Oslo Cancer Cluster Incubator added that it had been a very difficult process choosing the winners from the eight companies that applied. However, giving out prize money requires hard choices and he applauded the versatility at display.

–I think it is interesting that the four companies represent four different approaches within cancer research. Four different technologies. And getting them together here today is what Oslo Cancer Cluster and the incubator is all about: Getting different people together sharing knowledge and impulses!

Hanne Mette Kristiansen from Innovation Norway explained that Innovasjonsrammen was a way of reaching out to companies that usually avoided their attention. Startups that had not yet attracted any serious business attention, but nevertheless had very promising projects.

About the companies
Sergey Shaposhnikov from NorGenoTech explained that the money was coming in very handy. They are a company, as he explained it, straight out of the lab. Now they could start turning their research into business.

Clever Health has a more customer or patient oriented focus in their business model. Jon-Bendik Thue from Clever Health explained how a widespread disease as prostate cancer needs a way of differentiating between the patients that need treatment and the ones that do not.

Per Christian Sontum from Phoenix Solutions was very thankful for the award and money. He showed everybody how ultrasound can be way of targeting cancer cells with precision drug delivery.

And the event was elegantly rounded off by Christina Westerveld Haug and Lars Gunnar Fledsberg from Nacamed. Nacamed’s business goal is to produce nanoparticles of silicon material for targeted drug delivery of chemotherapy, radiation therapy and diagnostics to kill cancer cells. She explained that the money would be put in use straight away. Preparing for important trials after Christmas.

Giving Tuesday Crowdfunds for Cancer

You have probably heard of Black Friday. Now introducing Giving Tuesday: A day all about giving rather than buying. Eight Norwegian YouTubers have chosen to crowdfund on behalf of The Norwegian Cancer Society as part of Giving Tuesday. Raising money for cancer research and cancer patient care. A week before the big day five of them visited Oslo Cancer Cluster.

 

Tuesday the 28th of November, conveniently a couple of days after the shopping bonanza of Black Friday, is Giving Tuesday. It’s an international event. Started in 2012 by the 92nd Street Y and the United Nations Foundation as a response to Black Friday and commercialization and consumerism in the post-Thanksgiving season.

Live Social Media Broadcast
On the day the Norwegian youTubers are staging a broadcast marathon on social media. At DnB Headquarters (Bjørvika) they all come together for a live broadcast so everybody can follow the crowdfunding and view their videos during Giving Tuesday.  And there are a lot of them. 10 other charities are being crowdfunded on the day with youTubers raising money on their behalf.

Learn more about what’s happening here.

Youtubers crowdfunding for cancer

Learning About Cancer Research
The last couple of weeks the youtubers funding for The Norwegian Cancer Society have learned about cancer research and the fight against cancer. They have visited the Society’s new Science Center learning about the history of the disease and afterwards they spent a day getting updated on current cancer research at Oslo Cancer Cluster.

At Ullern Innovation Park, the home of Oslo Cancer Cluster, they got to see researchers in action and learned about the recent advances in cancer research. How researchers now are trying to trigger the immune system in the fight against cancer and how we are getting better at producing medicines that target cancer tumors directly. They also got see how research and innovation merges together with education at the Innovation Park. Here researchers, Bio Businesses and Ullern Upper Secondary School share the same building and cooperate.  Learn more about this unique cooperation.

With this new knowledge on cancer they are well prepared to crowdfund a lot of money for The Norwegian Cancer Society and cancer research!

About the YouTubers
Christoffer Ødegård (17) Specializes in FIFA. Playing live games on youTube.

Emil Saglien (15) Also into football. Actually, about his life, but his life seems to be football.

Sara Høydahl (19) Vlogs about many things, but has had special success with a Friday special on murder mysteries!

Truls Valsgård (23), Truls is a full time youtuber. Produces videos daily about his own life.

Tuva Robsrud (16) From Bærum and vlogs about fashion and make up.

 

NOME Important to BioIndustry Growth

Nordic Mentor Network for Entrepreneurship (NOME) will be an important piece of the puzzle if Norway is going to fulfill their ambitions set by the coming White Paper on the Healthcare Industry.

If we are to make our bioindustry more competitive and take a leading European role within eHealth, we need to learn from the best in the business. NOME is a program that aims to lift Nordic life sciences to the very top by using mentors.

The Norwegian Parliament’s Health Committee has asked for a report on the Healthcare industry in Norway, a so called White Paper. The objective is to examine the challenges we face because of climate change, new technology, robotics and digitalization.

Innovation needs to meet industrial targets
Additionally, the committee has stressed the importance of a purposeful dedication to health innovation. There should be a focused investment In fields where we have special preconditions to succeed. A better facilitation of clinical studies and use of health data is especially emphasized. Nordic countries are in a unique position with vast registries of well documented health data, a good example being the Cancer Registry of Norway. With better implementing of new technology this type of health data will be increasingly important.

The committee also emphasized the need to shorten the distance between research and patient treatment through effective commercialization. And, in continuation, easier access to risk investment capital to help the industry grow.

–The path from research to actual treatments and medication is long and hard, and rightfully so – everything must be thoroughly tested. But you can imagine! Every second we can peel off the time it takes for new research to reach patients is extremely valuable and saves lives, explains Bjørn Klem, Managing Director, Oslo Cancer Cluster Incubator.

NOME a piece of the puzzle
However, how do we fulfill these ambitions? Klem believes the answer is combining forces within the other Nordic countries.

– We have different strengths. Think about how big Bioindustry and business is in Denmark. There is so much to learn form that!

NOME is a concrete way of collaborating. It is easy to say: “we are going to learn from each other”, but how do we in a concrete fashion set about doing this. NOME is a mentoring program that sets collaboration in motion.

— To put it plainly, NOME is a program for all Nordic Bio start-ups. They can apply and if their application is successful we send experts catered to help with the company’s very specific needs, explains Klem.

NOME is a meeting place between the start-up freshman and the experts that have thread this path before. They match Nordic entrepreneurs with handpicked international professionals to help each start-up with their specific needs.

— Think about it! There is so much a new start-up don’t know, lacking network and experience. How do you make it as a commercialized company in the health industry? NOME can provide both business and research mentoring transferring knowledge from past successes to new ones, says Klem.

A Twofold Benefit to Society
The desire is to propel the Nordic countries into one of the leading life science regions to commercialize high growth life science start-ups.

— With NOME society’s return is twofold. Firstly, we give patients access to new treatment faster by giving start-ups the necessary guidance and know-how. Secondly, we give our Bio Business a chance to grow with all the positives that has to economy and employment, Klem believes.

Oslo Cancer Cluster Incubator coordinates the NOME-program in Norway and collaborates with the incubator Aleap to find the best match of mentors and entrepreneurs. To take part in the program you can click here for more information.

Raising Prostate Cancer Awareness

This week on Monday, Prostate Cancer Day, the Norwegian Cancer Society initiated their Blue-Ribbon Campaign to raise prostate cancer awareness. In line with the campaign, Oslo Cancer Cluster gives you the chance to update yourselves on prostate cancer research Thursday the 30th of November.

 

The Blue-Ribbon campaign is initially a month’s focus on prostate cancer, one of the deadliest forms of cancers we know. On average, every day three people die of prostate cancer in Norway alone. Over the length of a year, that number climbs above 5000 and they are all exclusively male.

For 20 years the Pink-Ribbon Campaign has been synonymous with awareness of breast cancer, a form of cancer that almost exclusively affect women. The movement was a success and brought a lot of attention and money for breast cancer research. Now, the attention turns to men and prostate cancer.

Research Needed
— I think we will receive a lot of attention with this campaign. The disease affects so many and is under communicated. Men often keep this type of information to themselves. And importantly, we need more research on the subject, says Anne Lyse Ryel, Secretary General at the Norwegian Cancer Society.

First and foremost, the campaign aims to lift prostate cancer into the limelight. Subsequently lifting taboos and increasing awareness among men and the population at large. Next in line is money for research. It is severely needed because reaching 2030, estimates predict an 40 percent increase on the frequency of prostate cancer.

An Update on Prostate Cancer
However, research is very much ongoing. And, if you are wondering what the most current research on prostate cancer entails? Visit Oslo Cancer Cluster’s R&D Network Meeting that Thursday the 30th of November focuses on exactly prostate cancer research. It can serve as a very informative conclusion to a month of prostate cancer awareness. Listen to prominent experts explaining current research and where prostate cancer research is heading in the future.

Read more about our Prostate Cancer meeting.

New Funds for Ultimovacs

Investors are recognizing the huge potential of Oslo Cancer Cluster member Ultimovacs. They are currently investing an additional 125 million NOK in the cancer research company.

 

Well known investors and Ultimovacs backers Stein Erik Hagen, Anders Wilhelmsen og Bjørn Rune Gjelsten are among financiers putting fresh money into the cancer research company, according to the Norwegian newspaper Finansavisen.

Preparing for the Stock Exchange
Kjetil Fjeldanger,  the Ultimovacs chairman, believes a stock exchange listing within 12-18 months is realistic. – We will start the preparations for a stock exchange listing to prepare for further financing, says Fjeldanger.

Ultimovacs has so far gathered a lot of funds. However, a lot of funding still remains because of the sheer cost of doing cancer research.

– Current funds will fund us until the start of phase two of clinical studies, explains General Manager of Ultimovacs, Øyvind Arnesen.

Fighting Cancer with the Body’s Own Tools
The company is developing a cancer vaccine that helps the body’s own immune system fight cancer. Currently, three concluded studies have been combined into one, and all participating patients will now be followed closely during a five year period to monitor their survival rate.

– The patients are doing well, but the documentation is not sufficient, but we continue in very good spirits, explains Arnesen.

However, a commercial vaccine will not be for sale until 2021, according to Arnesen.

Arnesen and Ultimovacs are also initiating a new study on melanoma cancer where the vaccine is used in combination with the most common immunotherapy remedies. The hope is that the two methods will strengthen each other and make an efficient cancer fighting remedy together. The study will conclude in 18 months.

Photocure with FDA Priority

Oslo Cancer Cluster member Photucure recently announced that the U.S. Food and Drug Administration (FDA) has accepted a Priority Review for an expansion of Cysview.

 

The FDA has accepted a supplemental New Drug Application (NDA) for Cysview on a priority review basis. Photocure, the Oslo, Norway-based company that developed and is marketing the drug-device system, wants to expand the labeling to include use for hospital patients not staying overnight.

Basically, a Priority Review  means that the FDA will speed up their approval process and a decision is now expected in the first half of 2018.

How Cysview Detects Cancer
Cysview is a method of detecting bladder cancer using photodynamic technology and is the only FDA approved product for use with blue light cystoscopy, where a device called a cystoscope is used to detect cancer inside the bladder.

Cysview is injected into the bladder through a catheter. It accumulates differentially in malignant cells. When illuminated with blue light from the cystoscope, the cancerous lesions fluoresce red, highlighting the malignant areas.

An important Tool
— Photocure is dedicated to improving the lives of patients with bladder cancer and we are committed to working with the FDA to bring this important clinical tool to the US market as soon as possible.

— We look forward to hearing a decision from the FDA early next year on the US Cysview® label expansion to include patients undergoing surveillance cystoscopy using a flexible scope, said Kjetil Hestdal, President & CEO, Photocure ASA.

 

 

 

About Photocure:

Photocure, the world leader in photodynamic technology, is a Norwegian based specialty pharmaceutical company. They develop and commercialize highly selective and effective solutions in several disease areas such as bladder cancer, HPV and precancerous lesions of the cervix and acne.

Their aim is to improve patient care and quality of life by making solutions based on Photocure Technology™ accessible to patients worldwide.

Photocure was founded by the Norwegian Radium Hospital in 1997. Today, the company, headquartered in Oslo, Norway, has over 60 highly skilled employees and operates in Norway, Sweden, Denmark, Finland and the United States.

KUR: En reise langs det elektromagnetiske spekteret

I kursserien Kompetanseutvikling i realfag (KUR), spør vi denne gangen: Er det farlig med stråling?

Hvordan påvirkes vi av trådløse nettverk?  Hvordan behandler man kreft med ioniserende stråling?

Stråling er en del av hverdagen vår på mange måter.  Det elektromagnetiske spekteret er også en gjenganger i mange læreplaner, både grunnskolen og i videregående skole.  Denne kurskvelden har det overordnede temaet “det elektromagnetiske spekteret”, og hvordan stråling påvirker liv og helse.

Vi tilbyr for første gang også en omvisning i strålingsbygget på Radiumhospitalet!

Hva er KUR? 

KUR er en serie med seminarer for lærere i videregående skole. Seminarene arrangeres av Ullern videregående skole og Oslo Cancer Cluster og foregår om ettermiddagen. Målet er å lære noe nytt, spennende og relevant for undervisningen sammen med både realister og andre lærere. Seminarene innledes med et foredrag av en forsker som forteller om ny forskning innen sitt felt.

Program

  • Registering, servering av mat og drikke, og mingling med gode kollegaer
  • Velkommen
  • Hvordan bruke matte og fysikk i kreftbehandling?
  • Kaffe og mingling
  • Høyspentlinjer og trådløs kommunikasjon-farlig eller ikke?
  • Q & A
  • Omvisning på avdeling for medisinsk fysikk på Radiumhospitalet

 

Opplegget er gratis, men du må melde deg på slik at vi vet hvor mange som kommer, og dermed kan beregne riktig i forhold til innkjøp av mat.

Klikk her å registrere

Targovax Releases Positive Clinical Results

Targovax has received very positive results regarding the survival rate of patients with pancreatic cancer.

Immune-oncology aims to help the body’s own immune system fight cancer and the ambition is to address the unmet need for long-term survival for patients with advanced cancers.

13 of 13
The company specializes in immune-oncology and is a member of Oslo Cancer Cluster. It recently released information revealing that 13 of 13 test subjects where alive after one year of treatment in a stage two clinical trial study. In addition, an active immune response–meaning the immune system was triggered to attack the cancer–was observed in as much as 11 of 13 patients.

No allergic reactions
These results came after the number of test subjects were reduced from 19 to 13 to see if allergic reactions stalled with reduced dosages of the TG01; Targovax’s lead RAS immunotherapy product. And luckily, no serious allergic reactions were observed,

Magnus  Jäderberg MD, Chief Medical Officer of Targovax, said:

– We are delighted that we maintain a strong immune response and one-year survival rate with the reduced dosing  regimen, essentially  equivalent  to  and  consistent with the previously  reported data  from the  main cohort.

These new results are so positive that stock market analysts DnB Markeds predict a serious stock market rise for Targovax.

 

About Targovax

Arming the patient’s immune system to fight cancer

Targovax is a clinical stage company focused on developing and commercializing novel immuno-oncology therapies to target, primarily, treatment-resistant solid tumors. Immuno-oncology is currently one of the fastest growing therapeutic fields in medicine.

In July, 2016 the Company listed its shares on Oslo Axess.

Read more

 

Digital helse – hype eller håp?

En kortere versjon av denne kronikken sto på trykk i Aftenposten 13.10.2017. Du kan lese innlegget i Aftenposten her

Vi må forhindre at digital helse blir digitalt kvakksalveri.

 

Hva får vi hvis vi smelter sammen teknologi og biologi? Jo, digital helse. Her finner vi et kinderegg for pasienter, leger og forskere. Det inneholder unike muligheter til presis behandling for pasienter og leger, og kan gjøre at forskere ser nye mønstre og bedre forstår hvordan kroppen fungerer.

Digital helse innebærer at forskere og leger analyserer data i helseregistre, biobanker og gjør kliniske studier for å gi oss bedre behandling. Samtidig digitaliserer vi selv stadig mer av det vi ser og opplever. Det gir oss mulighet til å spore, styre og forbedre helsen og leve mer produktive liv.

En fremtidsdrøm?
På samme måte som flygende biler siden 70-tallet alltid har ligget noen tiår frem i tid, har vi de siste tjue årene hørt om den fantastiske fremtiden med digital helse. Vi har hørt om leger som får råd fra datamaskiner, et helsesystem som lærer av feil og forbedrer rutiner, forskere med banebrytende teknologi og pasienter som selv oppdager tidlige symptomer.

Det er ikke tilfellet i dag. På legekontorer og sykehus sitter leger foran datamaskinen og skriver inn samme tekst i forskjellige systemer for lagring – ikke for analyse. Vi har et helsevesen som ofte gjentar feil fra året før, og forskere som først etter flere år får tilgang til data å analysere.

Vi snakket om digitale beslutningsstøttesystemer allerede for 15 år siden – så hvorfor forblir digital helse en fremtidsvisjon?

Innsatsen mangler ikke. Teknologifirmaer investerer mer i helse enn noen gang før. GV (tidligere Google Venture) har nå hoveddelen av sine investeringer i helserelaterte prosjekter. Legemiddelselskaper fokuserer på digital omstilling. Stater har store programmer, som for eksempel Finland og Storbritannias satsing på sekvensering og presisjonsmedisin. Samtidig deler privatpersoner data som aldri før. Vi gjør det på Facebook, til Google og til selskaper som 23andMe. Med genetiske data fra over 1,2 millioner mennesker har 23andMe nå mer genetisk informasjon enn noen annen aktør i verden.

Digitalt kvakksalveri
Så hvorfor har vi ikke kommet lenger med digital helse? En del av svaret er at selv de digitale produktene som kan være nyttige, ofte mangler en måte å berike forholdet mellom legen og pasienten på. Ofte skaper slike produkter flere lag med programvare og krever nye prosedyrer. Dette øker kompleksiteten, i stedet for å frigjøre tid til pasienter. En unøyaktig sensor-app gjør det vanskeligere å finne ut hva som feiler en pasient.

Ingen ønsker at mulighetene og de positive produktene blir gjemt mellom såkalte digitale fremskritt som ikke fungerer eller faktisk hindrer omsorg, forvirrer pasienter og sløser bort tiden vår. Slike digitale tilbakeskritt kan være ineffektive elektroniske helsejournaler og en eksplosjon av digitale helseprodukter direkte til forbrukerne, med apper av blandet kvalitet. Vi må forhindre at digital helse blir digitalt kvakksalveri.

Hvordan kan vi i stedet berike forholdet mellom lege og pasient? Ved å bringe pasienten og legen inn i innovasjonssystemet. Der kan vi koble lovende oppstartselskaper med ledende globale firmaer og miljøer slik at de kan samarbeide om bedre løsninger for pasienten. Vi må se akademiske fag på tvers, og bringe ulike industrier sammen – ja, rett og slett skape nye økosystem for forskning og utvikling. Oslo Cancer Cluster er et eksempel på et slikt økosystem der pasientforeninger, sykehus, kreftforskere og firmaer finner bedre og raskere løsninger for kreftpasienter. Samarbeid bygger tillit som gjør at privat og offentlig drar i samme retning.

Samarbeid fra hype til håp
For å realisere håpet om digital helse, må holdninger og praksis endres på tre fronter. Det offentlige helse-Norge må gjøre helsedata mer tilgjengelig og bruke privat kompetanse. Private firmaer må på sin side prioritere nøyaktighet og sikkerhet og tilpasse sin teknologi til helsedata, og ikke omvendt. Samtidig må individer akseptere at helsedata deles for å få bedre folkehelse.

  1. Det offentlige må gjøre helsedata mer tilgjengelig.
    Ideelt burde leger hele tiden se etter mønstre hvor behandlingen fungerer og ikke fungerer, slik at offentlig helsevesen blir som en kontinuerlig klinisk studie på god helse. Ett steg på veien er å bruke offentlige helsedata for raskere testing og godkjenning av nye medisiner. Det vil hjelpe pasienter, skape arbeidsplasser og gi oss en solid plass i det internasjonale helsemarkedet. Det er helseministeren som må initiere dette, og han kan begynne med å følge opp helsedatautvalgets anbefalinger.
  2. Private firmaer må tilpasse teknologi til helsedata, ikke omvendt.
    Kunstig intelligens revolusjonerer bransje etter bransje. Teknologibransjen har for eksempel revolusjonert betaling og leveringssystemer for å gjøre 2000-tallets fiaskoer innen e-handel til dagens suksesshistorier. På samme måte må teknologifirmaene revolusjonere nøyaktighet og sikkerhet for å lykkes med kunstig intelligens i helse. De må forstå medisinske detaljer. Ved å samle teknologifirma, lege og pasient i ett økosystem kan vi få til dette.
  3. Vi må akseptere at våre helsedata blir delt.
    En ny virkelighet er at vi blir deltakere i forskningen på vår egen helse. Noen blir bekymret av dette. Kan forsikringsselskaper bruke det mot meg? De fleste av oss gir allerede fra oss data både når vi er friske og når vi er bekymret. Vi bruker betalingskort og fordelskort på apoteket og matbutikken. Hva og hvordan vi handler sier svært mye om vår helse. Data som pasienter selv lagrer i apper, fokusgrupper og genetiske analyser blir viktig for å komplimentere offentlige data.

De største gjennombruddene fremover ligger i grenseland mellom biologi og teknologi. Her må vi satse og tørre å samarbeide på nye områder. La oss bygge Norge som et ledende senter innen digital helse internasjonalt. Offentlig administrasjon, privat næringsliv og vi som individer må samarbeide for å unngå hype og digitalt kvakksalveri – og sammen skape reelt håp for bedre helse.

Ketil Widerberg, daglig leder i Oslo Cancer Cluster 

Curida’s Spreading Roots

Curida has come a long way from defending their place at the Norwegian factory to setting their sights internationally. What is Curida and their goal all about?

 

Creating value within ones own country while steadily spreading roots globally is no easy feat, but the young Norwegian pharmaceutical company Curida is blooming.


Overcoming the threat at Elverum

The company’s history is a classic tragedy intertwined with devotion and a feel-good ending. In 2013, change of ownership and new strategic priorities threatened to strip 190 employees from their jobs at the manufacturing site in Elverum, Norway. New owners Takeda announced that the site in Elverum was to be shut down, after providing pharmaceutical manufacturing since 1974.

What followed was a feat of patience and outstanding motivation. Employees and management joined forces to establish a new company, form a new business model, and get going. In July 2015, Curida was established and operation carried on.


Going abroad 

Oslo Cancer Cluster member Curida is now a Contract Development and Manufacturing Organization, offering expertise in manufacturing and development of liquid pharmaceuticals.

The Curida customer base ranged from early-phase biotech companies to large, multinational pharma companies. Further growth in the international market is a top priority for the company. Curida is specialized on liquid products, using for example the advanced blow-fill-seal technology.

 

Unstoppable Ambition
Naturally, Curida has ambitious goals for home as well.

– In Norway we work closely with other start-up companies and make sure to help them thrive in production and innovation. Regardless of our vision to be a top-competitor internationally, locally, in Norway, we strive to become a national centre for industrialisation of medical innovation, says CEO Leif Rune Skymoen.

After overcoming the potential reality of shutting down, Curida now bursts through with unstoppable energy and ambition.

Missed Us at Oslo Innovation Week?

Luckily, all our events at Oslo Innovation Week and Forskningsdagene are available for a rerun. Have a look!

We had great audiences during our three events on the 27th and 28th of September. If your were not among them, sitting in the brand new science centre of the Norwegian Cancer Society, do not despair. The events were all live streamed on Facebook. You still have a chance to experience them right here.

The events were co-hosted with our partners the Norwegian Cancer Society, the Norwegian Radium Hospital Research Foundation (Radforsk), IBM, Cancer Research UK, Norway Health Tech and EAT.

 

The first event of the week was titled “Antibiotic resistance and cancer – current status, and how to prevent a potential apocalyptic scenario”.

Antibiotic resistance and cancer – Current status, and how to prevent a potential apocalyptic scenario #OIW2017

Posted by Kreftforeningen on Tuesday, September 26, 2017

 

Our secondary event had the title “Cancer research and innovation – benefit for patients”.

Cancer research and innovation – benefit for patients #OIW2017

Posted by Kreftforeningen on Wednesday, September 27, 2017

 

The third and final event on our Oslo Innovation Week calendar was about how big data may transform the development of cancer treatments. 

How Big Data may transform the development of cancer treatments #OIW2017

Posted by Kreftforeningen on Wednesday, September 27, 2017

Young Skills at Thermo Fischer

The innovation company of the year wants to encourage young talents. 

 

Six students from Ullern Upper Secondary School spent their school day at Thermo Fisher Scientific just days after the company won the prestigious award as the innovation company of the year in Norway.

As part of the school collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster, Thermo Fisher Scientific opens their labs for science students at work deployment.

 

Curious about the school collaboration? Check out our new webpage!

The Dynabeads
The students got a unique insight into how one of Norway’s largest biotechnology companies advances their products, based on the so-called Ugelstad-beads or Dynabeads, developed by Professor John Ugelstad in the late 1970s.

Today, Dynabeads are further industrialized for use in specialized diagnostic tests and cancer treatments worldwide. Annually, the beads are used in an estimated number of four billion diagnostic analyses.

Scientist Synne Larsen and three students are in the company laboratory in Lillestrøm, a ten minute train ride from the capital, where Thermo Fisher Scientific quality checks its products in Norway.

Impressed students 
– I find it incredibly useful to see how our learning at school is being used in the workplace, says student Emma E. J. Botten.

Together with two co-students she was able to see the research and production done in the company’s facilities in Lillestrøm. In parallel, three of the girls’ fellow students were in Oslo and tried out life as crime scene investigators, using Dynabeads as a tool for finding DNA, in the company’s facilities in Montebello.

– It’s impressive to see how much work lies behind their products and how dedicated those who work here are, says student Nora B. Grone.

Diverse employment strategy
The students are in their third year at Ullern Upper Secondary School, with science as their speciality. They all want a career in medicine, global health, mathematics, physics or engineering. A tour of the lab and a visit to the factory were therefore among the highlights of the day.

– It was a bit overwhelming to see Ugelstad’s equation, which is the recipe for the beads, says student Thilde E. Kjorstad.

– Yes, but keep in mind that everyone cannot be as brilliant as Ugelstad. Everybody we employ is equally important and we must have people with different backgrounds and experience, says Erlend Ragnhildstveit, Research Director of Thermo Fisher Scientific in Norway.

Useful cooperation
Thermo Fisher Scientific is a member of Oslo Cancer Cluster. Part of the staff is situated in Oslo Cancer Cluster Innovation Park, where Ullern Upper Secondary School is located as well.

– The collaboration with Ullern is useful and important to us as a company. This makes it easier to host deployments. In order to develop our business further, as well as the health industry in Norway, we need people with a science background, says Erlend Ragnhildstveit.

Immunotherapy: Finding the Right Fit

A new Norwegian research collaboration helps uncover what treatments are the right fit for American cancer patients. Who are the collaborators and what are they doing?

There’s a lot of excitement and optimism concerning immuno-oncology, where the method is to utilize a person’s own immune system to treat cancer. However, excitement aside, methods such as this are often a costly experience, in expenses as well as negative and unpredictable side-effects for the person in treatment.

Calibrated Collaboration
Company OncoImmunity is collaborating with the Norwegian Cancer Genomics Consortium (NCGC) in finding out what is causing these serious and unpredictable side-effects.

– This collaboration is an exciting opportunity for us. This is because we can demonstrate the strength of our advanced bioinformatics tools and show how they can be used to detect combinations of genetic variation in the patient, as well as neoantigens in the tumour that can further be used as biomarkers for sensitivity to this type of cancer treatment, says Dr. Richard Stratford, CEO of OncoImmunity, in a recent press release.

OncoImmunity develops proprietary machine-learning software for personalized cancer immunotherapy. The company previously won a prestigious European grant for their work.

You can read about it here!

Patients with sarcomas
The researchers in the collaboration analyse the patient’s genes in the tumour. More specifically, they are looking at American patients by using pembrolizumab, a humanized antibody that blocks cancer protection, on patients with sarcoma – cancer in various binding tissues.

Sarcomas are a rare form of cancer where treatment for such procedures have not developed as much as other cancer treatments. Patients who have sarcoma have generally a worse prognosis than other groups.

The research will be shared with the organization Sarcoma Alliance for Research through Collaboration (SARC), helping researchers within the organization to better utilize the results.

The NCGC perspective
The NCGC has, with help from the Norwegian Research Council, established a platform for advanced analysis for such cases. On top of this, they have a vast network of expertise within the area of molecular oncology.

– We find it exciting to see better treatments that can work for multiple cancers where treatment provides promising results, despite limited response, says Professor Ola Myklebost, leader for NCGC and the research project, in a recent press release.

– It is important to be able to choose the right patients for the right treatments. Not only because the treatment is high in cost, but also because of the serious and negative side-effects, he adds.

Creating a SPARK in Innovation and Industry

Stanford programme SPARK provides a shimmer of hope for startup companies. Now, SPARK sets sights on Norway. What exactly is SPARK?

We live in a world where technological and innovative solutions in medicine and healthcare are steadily pouring in. Not to mention, these solutions have the power to completely transform the health-sector in pinpointing and curing diseases before they even take hold.

Why, then, is it that we have the power to revolutionize healthcare, but don’t see it happen?

Unfortunate answer
The unfortunate answer lies in the explanation that most of these technological and innovative solutions have a tough time reaching the bedside from the bench. Reason being lack of funding, marketing or other important factors that help an industry flourish. How can we resolve this?

A solution
Enter SPARK: the Stanford programme that provides a unique partnership between the industry and university.

SPARK provides the necessary factors that help start-up and small companies to advance research breakthroughs. This is done by providing the education and mentorship needed to move the project along further.

SPARK scholars
More specifically, it works by providing graduate level courses about drug-development processes as well as “SPARK Scholars”—funding for project development and mentoring. This mentoring is provided by advisors who have expertise in product development, business, clinical care and generally preparing participants for generating research into therapies.

Coming to Norway
The University of Oslo : Life Sciences is planning to bring Stanford’s programme to Norway where two other European SPARK-programmes have visited Oslo in the summer to share their experiences. One of the univesity’s candidates has tested the programme at summer-school in Japan, as well.

 

Innovative solutions
Oslo Cancer Cluster has been an advocate for SPARK’s involvement in Norway, along along with the Norwegian Inflammation Network (NORIN), The Life Science Cluster and Norway Health Tech (previously Oslo Medtech).

Jutta Heix, the international advisor at Oslo Cancer Cluster, comments on SPARK’s involvement:

–The SPARK programme really fills a gap in the lively and growing biopharma innovation system here in Norway and will help to advance more projects and ideas from academia into innovative solutions for patients. In collaboration with SPARK Berlin and SPARK Finland, SPARK Norway will also contribute to building a European SPARK Network providing even broader support, exposure and collaboration opportunities for the academic innovators involved.  

 

Photocure’s Promising Combo

Photocure reveals promising results in bladder cancer through the use of Blue Light Cytoscopy alongside the drug Hexvix. 

Bladder cancer endangers 167,000 people in Europe annually followed by over 59,000 deaths.

Men are especially at risk, where a staggering 75% of bladder cancer cases occur. Not only that, but bladder cancer has a reputation as being one of the most expensive cancers to have, due to its high reccurence rate with an average of 61% reccurence the first year followed by 78% for the next five years.

The results we needed
As such, there is an increasingly urgent need to develop better methods of both managing and diagnosing the disease. We’re already hearing positive news from the Norwegian company Photocure; a leader in photodynamic technology. Photocure revealed the results from their study on the 18th of August, where the results appear promising in terms of prognosis and diagnosis.

The promising new combo
By combining Blue Light Cystoscopy (BLC) and Hexvix, Blue Light Cytoscopy being the insertion of a tube in the urinary tract instilled with a photosensitizing agent, they found the overall reccurence rate of three years had decreased substantially. More specifically, by combining Blue Light Cytoscopy with Hexvix, they found that the recurrence rate dropped down to 39% for the next three years, as opposed to using an optimized White Light Cytoscopy (WLC), a standard cytoscopy, that resulted in a 53.3% of reccurence.

Substantially better
The benefit was even more substantial for those with high-risk disease, where the chances of recurrence at year three were 52.1% for the Blue Light Cytoscopy combo as opposed to the White Light Cytoscopy, found to be at around 80%.

How does it work?
The probable reasoning for this improvement lies in how the new combo works to detect bladder cancer. By using Blue Light Cytoscopy with Hexvix, which is a drug that is selectively taken up by cancer cells in the bladder, they are able to see the cancer light up in bright pink. This enables the doctors  to accurately resect and make better management deciscions, thusly improving the patients outlook and way of life.

Roche Medicine Ready to Fight Breast Cancer

On the 15th of August, drug Kadycla (trastuzumab emtansin) is finally approved by the Beslutningsforum and ready to help hundreds with breast cancer in Norway.

The drug, developed by company Roche, specifically targets patients with the variant HER2 positive breast cancer – a breast cancer that tests positive for human epidermal growth factor receptor 2, a protein which promotes growth of cancer cells.

About 15-20% of cases in breast cancer, cancer cells have a gene mutation that produces excess HER2 protein, thusly making it a more aggressive form of breast cancer as well as being resistant to hormone therapy. However, treatments that specifically target HER2 are very effective.

New Drug Kadycla
This is where newly developed drug Kadycla comes in.

Kadycla is the first medicine targeted towards breast cancer patients where the cell lymph nodes are linked to the targeted antibody; meaning it’s the first drug where lymph nodes, or parts of the cell that filter out cancer, are linked to the antibody that attacks or even neutralizes the infected cell. This causes the chemo to target the HER2 positive cancer cells.

Prolonged Survival Rate
With the drugs approval, around one hundred Norwegian cancer patients are provided with a treatment program that shows a median prolonged survival rate of 5,8 months, compared to the combination of lapatinib and kapecitabine for persons with the variant HER2-positive breast cancer.

Better Quality of Life
On top of this, it’s known that spreading breast cancer is a deadly disease with lower quality of life, but Kadycla helps by attacking cancer cells in place of the body’s own healthy cells. Essentially, this means better quality of life for the patient due to fewer symptoms brought on by the disease.

Reached an Agreeable Solution
Kadycla, since September in 2014, has been recommended in the Norwegian Breast Cancer Group’s medical guidelines for those who would benefit from its capabilities. Roche, in this case, through the span of three years aligned eight different pricing options for the authorities. In regards to this, Audun Ohna, director of market access and pricing, comments:

– We have worked a long time so that Norwegian breast cancer patients can have the chance to use Kadycla in Norwegian health services. After roughly three years negotiating, where we have stretched ourselves thin both economically and in variating payment solutions, we can finally and gladly say we have reached a solution that is both acceptable for both parties. This will benefit patients, doctors and society as a whole.

Meet Our New Members – Part Two

We are proud to introduce Oslo Cancer Cluster’s new members. This is the second part of two stories about our new members.

You can find the first part HERE.

On the 24th of August, Oslo Cancer Cluster hosted a bustling summer party in the Oslo Cancer Cluster Incubator, where the new members had the chance to introduce their amazing work.

This is a brief introduction to those of the new members who primarily work in consulting.

Dehns
At Dehns, they have a commercially focused and practical approach to intellectual property that helps them to turn inspired thinking into patents, registered designs and trade marks. Dehns was founded in 1920 and has over 90 staff members, with offices in multiple locations across England. Dehns is one of the largest firms of trade mark and patent attorneys in Europe.

– Partnering with Oslo Cancer Cluster will allow us at Dehns to have more contact with the diverse members at Oslo Cancer Cluster that could benefit from our services. Norway is a buzzing place for opportunity, so we believe this is a special chance to be more present. By doing this, we hope to help companies with whatever questions or problems they might have, whilst also setting sights on getting in contact earlier, so that we can get to the root of the problem quicker and make a real impact as a result. Undoubtedly, getting to the root of the problem at the start is more exciting for everyone, and we aim to do just that, says Barbara Rigby, associate at Dehns.

GIAMAG
GIAMAG was established in 2012 as a commercial spin-off of Norway’s Institute for Energy Technology (IFE), where their patented technology is based off of the Institute’s research. GIAMAG is not wholly belonging to the area of consulting, but nonetheless offers consulting services in their product: one of the world’s most forceful and configurable magnets. GIAMAG’s mission is to provide solutions based on magnet technology for a varying range of industrial applications. They have the expertise to design and configure magnet systems to customer’s specific requirements.

Acapo
Acapo is an Intellectual Property Rights (IPR) firm mainly focused on the maintanace of patents, trademark registrations and design. Acapo, despite being located in several places, works as one company. The head office is located in Bergen. Acapo has a joint administration with one legal and one patent department. They strive for the highest degree of both service and quality, where the most important assets are their highly qualified professionals and staff members. They do not only offer advice in areas related to Intellectual Property, but also in business areas. Acapo covers all technical fields.

Artemida
Artemida Pharma is a consultancy company in drug development who has highly experienced scientists representing multiple disciplines and therapeutic areas. Artemida Pharma offers optimised strategic drug development for biotechnology and pharmaceutic clients. They have past experience with a wide variety of clients, geographic areas and product types that enable them to offer integrared project-driven solutions.

DNV GL
DNV GL allows organizations to progress the sustainability and safety of their business. They provide classification, technical assurance, software and independent expert advisory services to the maritime, oil & gas and energy industries. They also provide certification services to customers across a wide range of industries. In terms of healthcare, they support organizations in this sector across the globe by applying system thinking to address risks and deliver high-quality, person centered care.

IRW Consulting
IRW is a Nordic Contract Research Organization (CRO) With more than fifteen years of experience in conducting clinical trials, non-interventional studies and medical device studies. They have built a wide network in Scandinavia as well as with the rest of Europe and the United States. IRW, depending on the customer’s requirements, is equipped with staff that is either outsourced or works with in-house projects. They cover all stages of clinical development.

Meet our new members – Part One

We are proud to introduce Oslo Cancer Cluster’s new members. This is the first part of two stories about our new members.

You can find the second part HERE.

On the 24th of August, Oslo Cancer Cluster hosted a summer party with the intention of getting to know their newest members in an informative and fun setting. The party started with a heartfelt welcome and speech held by Oslo Cancer Cluster’s General Manager Ketil Widerberg and intensive mingling amongst guests. After the welcome was in order, each member stood up, in turn, to introduce their amazing work.

Of the 14 new members we have so far this year, here’s an introduction to those who primarily work in the area of biotechnology.

Precision Oncology
Precision Oncology is a specialty contract research organization (CRO) that provides clinical research services. The company primarily provides application of metrics-driven project management to perfect oncology drug development.

As for their inspiration and reasoning for joining the Oslo Cancer Cluster roster of members, Andrea Cotton-Berry, head of Strategic operations at Precision Oncology, responds:

– What really inspires us at Precision Oncology, is matching the right drug to the right patient, by using biomarkers for patient identification and stratification; a true personalized medicine approach, to find more efficient treatments for patients with advanced cancers. We are looking forward to bringing our team of oncology development experts to contribute to the Oslo Cancer Cluster mission and initiatives, especially advancing immuno-oncology research.

Personalis
Personalis is a leading preciscion medicine company focused on advancing next generation sequencing based services for immuno-oncology. The company is mainly focused on producing the most accurate genetic sequence from each sample set, and using analytics and privately owned content to draw reliable and accurate biomedical interpretations of the data.

In regards to current and future inspiration, Erin Newburn, Senior Manager and Field Applications Scientist at Personalis, comments:

– We aspire to utilize next-generation sequencing as a multi-dimensional platform for bio-marker discovery across cancer therapeutics, as well as throughout developmental stages.

iNANOD
iNANOD is a nanotechnology based anti-cancer drug developing company established in 2016. Their goal is to increase efficacy of anti-cancer drugs and to reduce side-effects for cancer patients as well as maximizing the patients longevity. They aim to become a pharmaceutical company for anti-cancer nanomedicines in the near future.

As for expectations and reasoning for joining Oslo Cancer Cluster, Nalinava Sengupta, CEO and Co-Founder of iNANOD shares his view:

– We think our project – to develop cancer nano-medicine – fits best with Oslo Cancer Cluster. In the incubator we get in touch with other similar firms who have achieved milestones in cancer drug delivery. We expect synergistic knowledge transfer within the incubator network, as well as various kinds of help from the cancer research related entrepreneurial ecosystem developed at Oslo Cancer Cluster. This also helps with business developmental aspects and project application writing.

Norgenotech
Norgenotech is a start-up company that originated from the EU project COMICS that aimed at improving production methods for analysis of DNA damage and repair. Norgenotech mainly assesses genotoxicity, or property of chemical agents that damage the genetic information within a cell, as well as drugs. The company also participates in research projects and developing tools for measuring DNA integrity in patients.

Eisai
Eisai AB originates from a global company in Japan that is active in the manufacturing and marketing of pharmaceutical drugs, pharmaceutical production systems, and over-the-counter drugs. Eisai AB, that will be joining the Oslo Cancer Cluster roster of members, is the sales subsidiary of Eisai Company.

Immunitrack
Immunitrack is a startup company with capabilities in production and studies of protein molecules central to the adaptive immune system in humans in order to develop new therapeutics. Their mission is to provide the research community with tools to redesign or select drug candidates at the early stage of research and development, but also to provide reagents to monitor leading drug candidates effect on patient’s immune system.

Nacamed
Nacamed‘s goal is to produce nanoparticles of silicon material for targeted drug delivery of chemotherapy, radiation therapy and diagnostics to kill cancer cells. By using silicon nanoparticles in cases such as therapy, the particles are biodegradable which entails a clean delivery without any side-effects as they completely disappear and dissolve from the body.

Arctic Pharma
Arctic Pharma is a privately held startup biotech company founded in 2012 that primarily focuses on developing innovative anti-cancer drugs. They do this by exploiting cancer cells and their peculiar features, or more specifically, by targeting key enzymes that are upregulated, or have been increased in terms of stimulus with inhibitors designed at Arctic Pharma. Essentially, their main mission is to become a leader in designing cancer therapies that are both environmentally friendly and have few side effects.

Thermo Fisher Scientific Wins Innovation Award

The Research Council of Norway has given Thermo Fisher Scientific the prestigious Innovation Award for their Dynabeads.

 

The Oslo Cancer Cluster member Thermo Fischer Scientific was awarded the prize for developing an entirely new variant of an existing product, making it possible to analyse human genes quickly and effectively and improve diagnostic testing and patient treatment.

This is the technology known as «Dynabeads» that makes faster and cheaper DNA-sequencing accesible.

– The award means a lot to us as a company, and to everybody who has been working on product, production and launch during these years. It is an acknowledgement that investment, cooperation and important global products are noticed, says Ole Dahlberg, CEO at Thermo Fischer Scientific Norway.

Vital role in Norwegian biotech
Thermo Fisher Scientific is one of Norway´s leading biotechs and among the most profitable. The company has played a vital role in Norwegian biotech with the development of «Dynabeads», used all over the world to separate, isolate and manipulate biological materials.

Thermo Fisher’s Dynabeads are used in basic research, in billions of diagnostic tests, as well as in immunotherapy.

In May this year, Thermo Fisher Scientific was nominated for the “Norway’s smartest industrial company” award for the same technology. The smart element was using the beads in a completely new way on a microchip in combination with semiconductor technology. This link between biotech and electronics has created the instruments from Thermo Fisher which we now see in research institutes and diagnostic labs all over the world.

Ambitious research and development
– Thermo Fisher Scientific is carrying out an ambitious research and development effort in a very important area. The company is achieving this by using its own resources, seeking cooperation with exacting customers and drawing on public funding schemes from, among others, the Research Council of Norway. In this way, the company contributes to job creation as well as value creation, said Monica Mæland, Minister of Trade and Industry, according to The Research Council of Norway. She presented the Innovation Award during the Arendal Week in August.

The Research Council’s Innovation Award comprises a cash prize of NOK 500 000 and is given each year to a business or public entity that has demonstrated an outstanding ability to apply research results to create research-based innovation.

Persontilpasset medisin i Arendal

Sentrale fagmiljøer og helsepolitikere møttes på Oslo Cancer Clusters første åpne møte under Arendalsuka. De diskuterte hva persontilpasset medisin har potensial til å være – og hva som skal til for å oppnå resultater av forskning og klinisk bruk.

Hva er egentlig persontilpasset medisin? Det handler enkelt forklart om at forebygging og behandling av sykdom skal bli bedre tilpasset den enkeltes biologi. Veien dit går gjennom forskning på genetisk variasjon. Slik forskning gir innsikt i hvorfor noen blir syke og andre ikke.

Tirsdag 15. august samlet folk seg i skipet MS Sandnes ved kaia Pollen i Arendal for å høre om persontilpasset medisin i medisinsk forskning og klinisk bruk.

Debatten ble arrangert av Bioteknologirådet, K.G. Jebsen-senter for genetisk epidemiologi – NTNU, Folkehelseinstituttet, Helsedirektoratet, Kreftregisteret og Oslo Cancer Cluster.

Alle vil ha det – hvordan gjøre det?
Fagmiljøer, politikere, pasienter og næringsliv ser ut til å ønske en utvikling mot mer persontilpasset medisin velkommen. Hvordan kommer vi fram til et helsevesen der dette er vanlig praksis?

Ole Johan Borge, direktør i Bioteknologirådet, var ordstyrer. Han åpnet møtet med å minne om målet for persontilpasset medisin: å tilby pasienter mer presis og målrettet diagnostikk og behandling, og samtidig unngå behandlinger som ikke har effekt.

Næringslivets mange muligheter
Kreft er det medisinske området som er tidligst ute med å ta i bruk persontilpasset medisin i Norge. Ketil Widerberg er daglig leder i Oslo Cancer Cluster. Han deltok i panelet under debatten, og fikk spørsmålet:

– Du representerer en næringslivsklynge. Hvilke roller kan store og små næringsaktører spille innen norsk helsevesen for persontilpasset medisin?

– Store farmaaktører og små biotekselskaper er viktige i utvikling av ny medisin. Store internasjonale selskaper kan komme hit til Norge for å teste ut og utvikle nye medisiner her. Store næringslivsaktører innen teknologi, som ikke tradisjonelt er involvert i helse, er det i dag ikke klart hvordan skal samhandle med helsesystemet. Apple har i flere tiår sagt at de vil inn i helse, men de har ikke klart det i USA. I Norge har vi imidlertid tilliten og muligheten til å skape slik samhandling. Dette er noe andre land ikke nødvendigvis har, sa Ketil Widerberg.

Personvern og persontilpasset
En stor del av debatten handlet om hensynet til personvern mot behovet for mer forskning på persontilpasset medisin. Er det slik at vi må velge mellom personvern og god forskning på persontilpasset medisin?

Hør hvordan paneldeltakerne tok tak i dette spørsmålet i denne videoen på Bioteknologirådets nettsider.

I videoen kan du til sist høre hva politikere fra Arbeiderpartiet og Høyre mener om persontilpasset medisin i Norge – og hva de vil gjøre først dersom de får statsrådposten innen helse etter Stortingsvalget i 2017.

Oslo Cancer Cluster har flere åpne arrangementer under Arendalsuka. Finn ut når og hvor her! 

Having Chemistry with Chemistry

Interested pupils at Ullern Upper Secondary School arrive at laboratory 117 to learn alongside Dr. Bora Sieng, a chemist in Arctic Pharma. Dr. Sieng advocates for the importance of chemistry and encourages pupils to pursue a career in the exciting field of chemistry.

 

At nine o’clock in the morning, three boys eagerly gather outside laboratory room 117. They’re waiting for an exciting opportunity offered by the collaboration between Ullern Upper Secondary and Oslo Cancer Cluster. This opportunity provides pupils the chance to see how chemistry is used in a real-life setting (a biotech company). This allows pupils to apply what they have learned in the classroom and in their textbooks to real-life scientific problems, such as developing new therapies for diseases.

The door opens and Dr. Bora Sieng greets the students with a friendly smile and handshakes. Dr. Sieng, who has a PhD in organic chemistry and is project leader in Arctic Pharma, welcomes them in. Arctic Pharma is a small start-up company developing innovative anti-cancer drugs.

Reaction Action
When entering the lab, we can feel the excitement between the pupils, they are here to learn. Dr. Sieng asks the boys what level of chemistry the pupils have taken. They nervously, but excitedly respond that they haven’t taken advanced levels, but know basic organic chemistry. Thus, they’re put to work after going through some textbook examples and introductory concepts. It’s time for some chemistry cooking!

A Collaboration is Formed
Arctic Pharma relocated their chemistry laboratory temporarily to Ullern in April. Dr. Sieng has been using the laboratory since then. He offers some insight into the new collaboration between Arctic Pharma and Ullern Upper Secondary School.

– For the past few months, I have had the opportunity to carry out my work using the facilities at Ullern through Arctic Pharma’s Collaboration with the school. I feel the school collaboration is a win-win for Arctic Pharma and the pupils at Ullern. Arctic Pharma is committed to introduce pupils to organic chemistry from a company’s perspective. This provides the students with the chance to get a feel of what it is like to work in a biotech company and to see how their education can be applied.

Chemistry is Exciting
When asked why exactly the pupils should learn chemistry, Dr. Sieng responds with this:

– Organic chemistry is fascinating! It can have many applications such as drug design and development, cosmetics, material development in, for example, rubber, plastics, detergents and paints as well as production of chemicals used in agriculture, to name a few examples.

Next Generation
At Arctic Pharma, Dr. Sieng works in a team of scientists that specialize in different fields important for drug design and development. As a medicinal organic chemist, Dr. Sieng is passionate about his work, and hopes to inspire the new generation of chemists.

–  To keep Norway a world innovator, the field of chemistry is important and we especially need to nourish the next generation of chemists and scientists, hence this collaboration is also important for our country.

Essentially, we need to ensure a future for Norway that will continue to thrive, construct and further the research that will help us continue down the path of innovative discovery. Such a future can only be secured if we continue to unlock the potential that chemistry offers us; a future waiting to be unlocked by the next generation.

Funding Innovation in BioPharma and IT

What kind of work does it take to receive PERMIDES funding for innovative concepts and projects? Meet one of the companies that just received funding. 

 

22 collaboration projects will receive a total of 1,25 Million Euros from PERMIDES for innovation projects between small and medium sized enterprises (SMEs) from biopharma, bioinformatics and the IT sector. 

One of the lucky companies to receive innovation funding is Oslo Cancer Cluster member Myhere. For MyHere, it was especially important that the PERMIDES initiative is focused on the intersection between BioPharma and IT.

– Working with partners that are specialized in our field makes it easier to communicate the mission we are on, the concrete problems we are trying to solve and to qualify if we are a good match for each other or not. Furthermore, as we learned about the people and companies involved with PERMIDES, we discovered that we could learn a lot from the experiences of other SMEs in the program, says Jon-Bendik Thue, CEO at MyHere.

An innovative health app
MyHere’s mission is mainly carried out through the use of their app. This app, which pinpoints levels of Prostate Specific Antigen (PSA) in the bloodstream, enables a clearer outlook on potential prostate cancer and when to promptly, and timely, seek help. Thus, this app creates a balanced overview of prostate cancer that can save the patient and doctor from underdoing and overdoing the process. Essentially, the app is designed to save lives.

 

Essential health data
The funding will enable MyHere to start with a project that manages content from owners of health data. Health data is a tremendous resource, but unfortunately also tremendously underutilized. One important factor is the issue with getting consent from the owner of health data for research purposes. Typically, the owner is the individual the information was generated from, often in the role as a patient.

– As a provider of medical services directly to consumers, while at the same time organizing data across patient journeys, we are in a unique position to help solve the issue with consent for use of data. The funding from PERMIDES will allow us to build a dynamic data owner content management system, that will be integrated into our medical service platform. We are very excited about this project and we look forward to implementing it with our partner FramX, says Thue.

– Without this funding, we would have had to postpone the initiative without knowing when we would be able to realize it. Now we are thrilled that we will be able to hit the ground running right after the short Norwegian summer, he adds.

More winners in this round
Another Oslo Cancer Cluster member that got funding in this PERMIDES call is Arctic Pharma, a small start-up company committed to developing innovative anti-cancer drugs by exploiting the peculiar metabolic features of cancer cells.

These two Oslo Cancer Cluster members were among six Norwegian companies involved in four successful applications for Innovation Voucher funding. All of them will be able to initiate their joint projects in August and expect to see results early next year.

 

Doing More in Prognosis and Diagnosis

The project DoMore! aims to achieve better and faster diagnosis and prognosis with information and communication technology solutions. 

 

Technological innovation brightens the future ahead. With an increase in investment towards these areas, we create not only further potential in the technological field, but see betterment in the area it was produced for – such as productivity, reliability, effectiveness and so on. This is great news, especially in terms of cancer treatment where continuous betterment is essential. But how, and to what effect, is this done?

Project DoMore! has the answers.

The project, funded by the Norwegian Research Council and including members of Oslo Cancer Cluster’s team, debates the future of doing more with modernized thinking.

How do they do it?
This is done by putting more effort into research and development of information and communication technology solutions to supplement, or even replace, methods in pathology: the study of causality in diseases. DoMore!, in this case, will increase productivity and quality of cancer treatment.

Close-up of a cancerous tumour within the intestine. The green line represents manual marking of the tumour, while the blue is automated. Photo: Institute for Cancer Genetics and Informatics

The Ambition
The goal, then, is to decrease the slight human error brought on by complex decision making and visual observation to a computer basis with unbiased, reproducible and greater accuracy in algorithms. By doing this, DoMore! hopes to increase efficiency in pathology, methods and markers to aid the clinician in giving better and more personalised treatment to cancer patients everywhere.

On top of this, DoMore! believes the same efficiency will apply to patents, publications, products and spin-off companies, as well as decreasing overall cost and treatment time.

Harbinger of Innovation
In regards to the importance of this project, Ketil Widerberg, who is General Manager of Oslo Cancer Cluster, highlights:

– Project DoMore! furthers the innovative process. This combination of biology and technology will become increasingly important, especially in the area of pathology. Ultimately, Project DoMore! is setting a great example of being the harbinger of our adapting future.

Targeting the Big Three
As of now, project DoMore! will be focusing on three major cancer forms: lung, colorectal and prostate cancer. These account for 44% of all deaths brought on by cancer and are amongst the most common.

Better Prognosis and Diagnosis Ahead
Undoubtedly, project DoMore! is set out to achieve great things. Already within the bright future of 2021, they hope to offer much securer and faster systems for diagnosis and prognosis amongst cancer patients.

How Cancer Research Becomes a Company

The Department of Cellular Therapy is great at transforming cancer research into new companies. The latest spin-out is Zelluna.

 

The Department of Cellular Therapy at the Radium Hospital, Oslo University Hospital, features one of Europe’s largest and most modern good manufacturing practice (GMP) facilities for cellular products. Head of the department is Prof. Gunnar Kvalheim. They are also conducting translational research, and their research has been spun out as several companies, such as the newly established company Zelluna.

The immunomonitoring unit is a major part of the department, and is led by Else Marit Inderberg. This unit is situated in the Oslo Cancer Cluster Incubator, which is an integrated part of the Oslo Cancer Cluster Innovation Park. A translational research lab has been created and is associated to the immunomonitoring unit.

The cancer killer
“Our major strength is that we have all aspects within the department to take cellular research from the bed to bench and back again. We have the equipment and the specialists to do everything here”, says Inderberg.

Together with Sébastien Wälchli, she is also the project leader for the translational research lab. Here, they develop cancer vaccines and work with adoptive T cell therapy. A T cell, or T lymphocyte, is a type of lymphocyte (a subtype of white blood cell) that plays a central role in cell-mediated immunity. T cells have the capacity to kill cancer cells.

In the lab, they look for a T cell receptor (TCR), which is a molecule found on the surface of T cells. They use Chimeric antigen receptors (CARs), which are engineered receptors that graft an arbitrary speci city onto a T cell. Ultimately, the researchers work with a universal cell line for cellular therapy – a universal cancer killer.

This is a T cell, or more precisely, an actin cytoskeleton of a T lymphocyte. The picture is obtained by a special micro- scope. The cell’s size: 38*38 μm. Photo: Pierre Dillard

Innovation from the biobank
“In the translational research lab, we think innovation all the time. In our research, we actively search for solutions to unmet medical needs within cancer”, says Inderberg.

The translational research lab was built upon the work done by the section for immunotherapy established by professor emeritus Gustav Gaudernack, and most of its activity relies on the use of a database of patient samples called the biobank. This specific biobank represents an inestimable source of information about the patients’ response to immunological treatments over the years. Furthermore, the patient material can be reanalysed and therapeutic molecules isolated. This is the basis of the company Zelluna.

Industrial collaborations
The Department of Cellular Therapy is heavily involved in both academic and industrial collaborations. The latter include collaborations with several biotech companies as well as pharma companies situated in the Oslo Cancer Cluster Innovation Park, developing novel immunotherapy cancer treatments. Examples of industrial collaborations are the German company Medigene, the Norwegian biotechs Targovax, Ultimovacs, Lytix and PCI Biotech, and the bigger biopharmaceutical companies BMS, Novartis and ThermoFisher.

In addition to their industrial collaborations, the Department of Cellular Therapy also wants to commercialise their own projects.

The Zelluna Spin-out
“Our latest spin-out is Zelluna, which has recently been set up as a start-up. Staff has just been hired to drive the development of TCR-based therapies to clinical trials”, says Sébastien Wälchli.

The TCR-approach is based on identication of T cell receptors from patients clinically benefitting from treatment with vaccines from back in the nineties and early 2000s. The approach is to modify the patient T cells to express the same receptors before giving the cells back to the patients, ready to combat the cancer cells.

The company has been established through the efforts of the Radium Hospital Research Foundation as well as Inven2.

“This is a very interesting and unique approach. We are eagerly anticipating the development of the company”, says Inderberg.

International Collaboration in Cancer Innovation

24 oncology innovators from 9 international hubs attended the 6th International Cancer Cluster Showcase in San Diego.

 

The International Cancer Cluster Showcase (ICCS) was born back in 2011 in Washington DC, during the world’s largest biotech conference, BIO International Convention. International cluster managers and representatives from the oncology field in Boston, Toulouse and Oslo met during a networking reception and agreed to team up for a joint initiative to expose their emerging oncology innovators to the global oncology community gathering at BIO.

This idea matured in a stimulating and dynamic annual meeting featuring oncology innovators from several North American and European innovation hubs.


Exciting partnering opportunities
During the  6th edition of ICCS around 200 delegates learned about exciting partnering opportunities pitched by 24 companies from 9 innovation hubs.

Oslo Cancer Cluster was represented by its member companies Oncoimmunity AS and Nordic Nanovector. The two companies presented their preclinical and clinical candidates for treating hematological cancers. Inven2, Norway’ largest tech transfer organisation, gave a glimpse into their growing oncology portfolio.

An overwhelming amount of cutting edge oncology innovations from leading North American and European industry clusters were presented in compact presentations. Poster sessions, networking parts and a final reception allowed the participants to connect and discuss collaboration opportunities.

– I hope that the ICCS 2017 reception was as productive for the participating biotechs as the BIO reception in Washington 6 years ago was for the founders of ICCS, said Jutta Heix, International Advisor at Oslo Cancer Cluster and coordinator for the event.

Our International Work

Oslo Cancer Cluster aims to enhance the visibility of oncology innovation made in Norway by being a significant partner for international clusters, global biopharma companies and academic centres.

– Our goal is to support our members in their effort to attract international partners, investments and successful academia-industry collaborations, says International Advisor Jutta Heix.

Heix is responsible for the cluster’s international initiatives, cluster network and partnering activities.

– Back in 2008, Oslo Cancer Cluster was not visible internationally, and few people knew about oncology innovation in Norway. We began to seek out partners and actively approach international pharma companies and other clusters offering relevant synergies, says Heix.


Building relationships abroad

The relationships thrive on joint initiatives. These include invitations to Norway with tailored programmes, where potential collaboration partners can meet academic teams, start-ups and biotechs. Oslo Cancer Cluster has also joined forces with other hubs and clusters internationally.

One such collaboration is the International Cancer Cluster Showcase (ICCS) at the global biotechnology gathering BIO International Convention in the US. In 2017, it is arranged for the 6th time, with European and North American partners, including the Massachusetts Technology Transfer Center, The Oncopole in Québec, The Wistar Institute in Philadelphia, Medicen in Paris and BioCat in Catalonia.

– This year the ICCS will showcase 24 innovative oncology companies from nine international innovation hubs and clusters. Three of our member companies in Oslo Cancer Cluster will use the opportunity to pitch their products and ideas to a global oncology audience, says Heix.

Jutta Heix is Oslo Cancer Cluster’s international advisor.


European and Nordic arenas
Meeting places are important in Europe too, with BIO-Europe, BIO-Europe Spring and Nordic Life Science Days at the top of the list. Oslo Cancer Cluster is the oncology partner at the Nordic Life Science Days. As a region, the Nordic countries are of international importance in the field of cancer research and innovation, especially in precision medicine, and Oslo Cancer Cluster participates in advancing Nordic collaboration.

Oslo Cancer Cluster also engages in more cancer specific European events. One example is the Association for Cancer Immunotherapy Meeting (CIMT), which is the largest European meeting in the field of cancer immunotherapy, also known as immuno-oncology.

– Many of our members are active in the field of immuno-oncology, so for a couple of years we have organized an event called CIMT Endeavour with German partners. The aim here is to discuss and promote translational research and innovation in immuno-oncology, says Heix.


Hot topics

Cancer immunotherapy has had a major impact on cancer treatment and global research and development in the cancer field. The concept took off with the approval of the first immune-checkpoint inhibitor, called Ipilimumab, in 2011. It offered a ground breaking new treatment for melanoma. In 2013, Science Magazine defined cancer immunotherapy as the breakthrough of the year. Since then, immunotherapy has been dominating the agenda of oncology meetings.

Other hot research and development topics are precision medicine and the increased digitization of the health sector. Oslo Cancer Cluster incorporates these topics in the international work, and aims to expand the services it provides for its members. The cluster recently got funding from Innovation Norway to do this, by adding an EU-advisor to the team.

– We want to increase our members’ involvement in EU’s research and innovation programme Horizon 2020. The new EU-advisor will help our members identify relevant funding schemes, find partners and prepare the applications, says Heix.

This initiative has already started to show some results. In the spring of 2017, Oslo Cancer Cluster member OncoImmunity AS won a prestigious Horizon 2020 SME Instrument grant, tailored for small and medium sized enterprises (SMEs). This grant targets innovative businesses with international ambitions — such as the bioinformatics company OncoImmunity.

 

New meeting places
– Member needs are important for us, as it is for clusters in general. Our network is for the benefit of our members. A good way of leveraging the network, is by creating relevant initiatives and new meeting places – to keep things moving forward, says Heix.

Oslo Cancer Cluster has new international initiatives coming up. One is in immuno-oncology, bringing Norwegian biotechs to the well-established research communities on the US East coast. The biotechs will get training and support, and will meet academic medical centres and biopharma companies in Boston and other cities. This initiative is supported by Innovation Norway’s Global Growth programme.

Another new initiative takes on academic innovation. More good ideas from academia should make it into patents, start-ups and investment opportunities for industry partners.

– Stanford University has a programme called SPARK. We are working with Norwegian partners, including The University of Oslo Life Science and The Norwegian Inflammation Network (NORIN), on implementing a Norwegian SPARK-programme. This will be part of the global SPARK-network, and we are already building a European node together with Berlin and Finland, Jutta Heix says.

New Board Members

Our newest board members are officially introduced! 

On the 24th of May in 2017, the general assembly meeting took place and fatefully decided Oslo Cancer Cluster’s newest board members. These members, despite having some big seats to fill, will take on a respectful duty belonging to the board: where professionals in the field function as the governing body for the company.

The Wish
Oslo Cancer Cluster wished to see their new board members possess backgrounds from both the University of Oslo and Oslo’s University Hospital, where experience in innovation and clinical expertise follow. They also wished for a pharmaceutical representative with international involvement. Seeing the results, it seems like the wish came true.

Innovation and Clinical Expertise
Inger Sandlie is one of the new members . She is a professor at the Department of Biosciences, University of Oslo, and research group leader at the Department of Immunology, Oslo University Hospital. She is also deputy director of the Centre for Immune Regulation. The centre identifies and investigates novel mechanisms of immune dysregulation to advance the development of therapeutics.

Sandlie has co-authored more than 120 publications, supervised 15 PhDs, received awards for scientific innovation and is co-founder of Nextera A/S and Vaccibody A/S. She presently consults for Syntimmune A/S (Boston, US) as well as Albumedix A/S (Nottingham, UK), and serves on the board of the technology transfer office of the University of Oslo (Inven2) and The Norwegian Radium Hospital Research Foundation.

When asked why, in short, she has become a board member, Sandlie responded:

– I work within a network of scientists and biotechnology companies, and thus I think it’s extremely important to use this network alongside Oslo Cancer Cluster in order to influence positive change, as well as using its potential the best way possible.

Our other newest board member, Professor Øyvind Bruland, has a two decades experience as consultant oncologist at Radiumhospitalet, Oslo University Hospital. His main and tenure position is as professor of clinical oncology, University of Oslo. He specializes in primary bone and soft tissue cancers as well as skeletal metastases brought on by prostate and breast cancer. He has co-authored approximately 200 publications and supervised more than 20 PhD candidates. Bruland is one of the founders of the successful Norwegian biotech companies Algeta and Nordic Nanovector. He is also a co-founder of Oncoinvent.

When asked the same question as Sandlie, Bruland responded:

– I’m impressed with what Oslo Cancer Cluster has accomplished, but I think within certain areas like commercialization, some “new thinking” and support is needed. It’s important that we don’t get lost in bureaucracy.

International Pharma
Our third and final new board member, Benedikte Thunes Akre, has experience as a medical director at AstraZeneca, a global science-led pharmaceutical business with great success. On top of this, Thunes Akre has a long line of experience working with oncology throughout her career. Her response to why she has become a board member, was as follows:

– My main interest and experience throughout my career has been focused on oncology. The field is constantly emerging and I would like to contribute ensuring that Norwegian expertise is seen and recognized nationally as well as internationally, with the ultimate goal of improving the lives of patients.

Future and Past
In addition to the three new board members, Oslo Cancer Cluster is happy to include a new honourable member of the board: Jónas Einarsson. During the last 16 years, he has acted as the CEO for The Radium Hospital Hospital Research Foundation. He is also the founder and former CEO and chairman of the board of Oslo Cancer Cluster and Oslo Cancer Cluster Innovation Park.

The future looks promising with our newest board members. We thank our previous board members, Ingvild Hagen, Professor Svein Stølen, and Professor Gunnar Seter for their great time, effort and contribution!

 

How Our Genes Will Change Cancer

Doctors, researchers and audience gather at breakfast to learn about genetics, data and how working together will help beat cancer.

The time is 8:15. Many have started to file in and shuffle to their seats while chatting and occasionally sipping their first morning coffee. As it starts to quiet down, the lights are dimmed, the audience wake up and the breakfast meeting begins.

An air of seriousness with a hint of respect changes the atmosphere, and the audience watches as the first guest speaker steps in and introduces the concept of genes and their relation to cancer.

– Cancer is brought on by errors in our genes. Most of the time, cancer is a result of the unlucky, says Borge, who is the director at the Norwegian Biotechnology Advisory Board.

This is the start of his talk on genes and cancer, where the audience is introduced to that which defines us most: DNA, the molecule of life.

To the moon and back
– 20,310 recipes in our genetic material. 2 meters of DNA in every cell. 10 Billion cells, of which 20 billion meters of DNA is found. If you do the math, astonishingly it amounts to 26,015 trips back and forth to the moon, Borg says, as he shows us a visual representation on the powerpoint slide. (See video in Norwegian.)

It’s this incredibly long strand of genetic material where things can go horribly wrong. If there’s a genetic error, or mutation in the DNA that happens to take place between the double helix and if there’s enough errors, cancer happens. This is the unfortunate fate for many of us.

– However, we may not have come a long way in finding the ultimate cure for cancer, but what we have accomplished is the ability and possibility of analysing, and ultimately predicting, cancer through genome sequencing, Borge says.

It was the best of times…
This message, as a central theme to the breakfast meeting taking place, shines a hopeful light in an otherwise frightful and serious subject. With genome sequencing, or list of our genes, scientists and doctors will have greater accuracy to predict genes that are potential carriers, and highly susceptible to, different cancers.

However, this requires a large amount of genome sequences: we need an army of genome data.

From terminal to chronic
To set further example, the next speaker to take the stage is oncologist Odd Terje Brustugun. He stresses the importance of personalized treatment for lung cancer patients, even those with metastatic cancers. These patients can be tested today to see if they are viable to receive new kinds of treatmemt, such as targeted therapy. This was the case for lung-cancer patient, and survivor for five years, Kari Grønås.

Kari Grønås was able to participate in a clinical study. She was treated with targeted therapy instead of the ordinary treatment for lung cancer patients at that time: chemotherapy.

– I feel I have gone from feeling like I have a terminal disease to a chronic one, she says from the podium.

Beating cancer: the story of us
This personalized approach is arguably what worked for Kari, setting the example and potential for the future. If we can analyse our own genes for potential cancer, then we are both able to prevent and provide personalized medicine catered to the individual. This is why genome sequencing is important for the future.

However, this cannot be done alone. To get a representable treatment for the individual, we need data. And data does not come reliably from one individual, but from the many.

– It is not your genes that are the key for tomorrows cancer research, it is ours. It is collaboration where large amounts of data and correlation will give us the knowledge that ensures the right path towards the future. A future with better cancer treatment for all, says Ole Johan Borge.

A Constant State of Liveliness

A driving force behind the collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster is stepping down. This is her adventure.

After fifteen great and productive years at Ullern Upper Secondary School, Esther Eriksen steps down from her position as vice principle in the upcoming month. Esther, who has been responsible for many various tasks in her position, has been a part of Ullern’s transformative experience alongside Oslo Cancer Cluster’s emergence in 2009 and recounts her time at Ullern.

A flourish of innovation
Esther Eriksen describes the transformation and unification of Ullern Upper Secondary School and Oslo Cancer Cluster as being a progression from a strong belief in it’s potential to a flourish of innovation.

The collaboration has become a constant state of liveliness: from pupils attending classes, to research, to teamwork and a continuous process of growth.

Since 2009, the school and the cluster, with all its member companies and institutions, has unified to produce a collaborative arena for the pupils. This is an experience Eriksen describes nothing short of “wonderful, educational and groundbreaking”.

Diversity in teamwork
– The collaborative experience is incredible due to the pupils’ ability to take in experience in regards to teamwork. Not to mention they learn how knowledge from books can be translated to hands on work and ultimately get a feel for what life has in store for them, says Eriksen.

Esther Eriksen describes her own experience as being much of the same, and stresses the notion of working as a team.

– Diversity in teamwork is really important! We see this from well-received results and happy pupils, says Eriksen.

Future potential
In regards to the future of this collaboration, Vice Principle Eriksen expresses her desire to see the school continue down the path it has set out on. She wants to see the pupils continue to learn, gain opportunities and continue to work collaboratively.

– I wish the pupils would gain further awareness of the potential this unification brings, and hope to see increased interest in teamwork as an integrity.

The best of moments
Esther Eriksen also shares what she would consider the best moments of her time at Ullern, of which these were her favorite:

  1. When the new school first opened in the Oslo Cancer Cluster Innovation Park in 2015 – hard work finally turned to fruition
  2. Seeing how happy and motivated the pupils are when they do projects with scientists, businesses and hospitals in the cluster
  3. The emergence of vocational studies, such as electronics and health care studies, at Ullern Upper Secondary School

To conclude, Vice Principle Eriksen would like to leave the school and her colleagues this message: that she will continue to observe and follow the thriving development taking place at Ullern Upper Secondary School.

– This is only the beginning!

 

Helping biotech companies through innovative IT solutions

The cluster-to-cluster project PERMIDES stimulates collaboration between biotech companies and IT companies. Its goal is to develop more innovative, personalized cancer treatments.

 

Oslo Cancer Cluster is currently involved in a big European collaboration through the cluster-to-cluster project PERMIDES.

24 May you can benefit from the project by joining the BIOMED INFORMATICS workshop in Oslo. This workshop brings together small and medium sized companies from the biopharma/medtech and IT sectors. (See the sidebar for more info on this event.)

PERMIDES aims to utilize novel IT-solutions to accelerate drug development in biotech companies. Biotechs and the healthcare sector generally lag in using IT in their everyday work.


Can get better at IT

“I know of companies who still manage their clinical trial studies using Excel. This is not a good idea. An Excel sheet may only hold a limited amount of data before it crashes and you lose everything”, says Gupta Udatha.

Udatha is the PERMIDES project leader in Norway. He divides his time between Oslo and Halden, where the NCE Smart Energy Markets-cluster is situated. This cluster is mainly involved in IT. Other clusters participating in the project are from Austria and Germany.


Ambitious goals for next year

Before PERMIDES ends in 2018, it aims to have reached some ambitious goals:

  • 90 innovation projects between IT and biotechs will have received funding through a voucher system
  • 120 IT companies and biotech companies will have benefited from technology transfer activities
  • 75 enterprises will have participated in networking conferences at both regional and European levels
  • 100 companies will have placed their profile in a semantic matchmaking portal: the PERMIDES platform


Find your ideal match

The PERMIDES platform is designed to match IT-companies and biotech companies. As a supplementary service, Gupta Udatha and others involved in PERMIDES are currently busy arranging matchmaking events all over Europe. They try to find the perfect match between IT- and biotech companies interested in collaborating on projects on personalized medical treatment.

Through PERMIDES voucher funding, a biotech company can avail services for up to 60 000 Euros from an IT-company. This gives them a market advantage in digitalizing their processes.

“The health care and biopharma sectors must understand that new IT solutions are the way forward. Tasks which a company may spend weeks and months doing, may easily be done by a few smart IT-solutions, in just few clicks, says Udatha.


Pursuing new EU-programs

PERMIDES is the first EU-project Oslo Cancer Cluster is involved in, but it will not be the last. Oslo Cancer Cluster is actively seeking new EU-projects to apply for.

This year, Oslo Cancer Cluster and Oslo Medtech, another health cluster in Norway, are looking into new EU-projects to apply for together. They have received support from the Norwegian Research Council, that wants more Norwegian institutions and companies to get involved in EU-projects.

“Hopefully, we will have landed ten new EU-project applications by 2019”, says Udatha.

 

What PERMIDES is

  • Stands for Personalized Medicine Innovation through Digital Enterprise Solutions
  • The project is for European small and medium sized enterprises in biotech and IT
  • The aim is to strengthen the competitiveness and foster the innovation potential of personalized medicine as an emerging industry in Europe
  • PERMIDES offers workshops, funding schemes and a matchmaking portal for the participating companies
  • Read more on permides.eu


Clusters involved in PERMIDES
Oslo Cancer Cluster S.A (Norway)
NCE Smart Energy Markets, c/o Smart Innovation Østfold AS (Norway)
Software-Cluster c/o CyberForum e.V. (Germany)
Cluster für Individualisierte ImmunIntervention (Ci3) e.V. (Germany)
Intelligent views GmbH (Germany)
NETSYNO Software GmbH (Germany)
Oncotyrol – Center for Personalized Cancer Medicine GmbH (Austria)
IT-Cluster – Business Upper Austria, OÖ Wirtschaftsagentur GmbH (Austria)


Vi vant Siva-prisen 2017!

Oslo Cancer Cluster Incubator stakk av med Siva-prisen for 2017 på årets Siva-konferanse i Trondheim.

Slik beskriver Siva vinneren:

Oslo Cancer Cluster Incubator er en pådriver til utvikling av diagnostikk og behandling av kreftpasienter ved hjelp av ny revolusjonerende teknologi. De jobber med å omsette kreftforskning til nye medisiner og behandlingsformer. Dette gir nytt håp for kreftpasienter og bidrar til en ny helsenæring i Norge. Inkubatoren får daglig besøk av bedrifter, politikere, forskere, elever, gründere og andre som ønsker å lære eller bidra til helseinnovasjon.


Helseinnovasjon
– Alle snakker nå om at helseinnovasjon er viktig. Vi i Oslo Cancer Cluster Incubator er en viktig aktør i innen helseinnovasjon. Vi ønsker å bidra nasjonalt i dette, med en klar tynge på kreft, sier Bjørn Klem, leder for Oslo Cancer Cluster Incubator.

Han er fra seg av glede over at inkubatoren dro i land seieren på årets store Siva-happening, konferansen om den grenseløse industrien, som fant sted i Trondheim tirsdag 9. mai.


Penger til bedre nettverk
Verdiskapning og samarbeid jobber Oslo Cancer Cluster Incubator mye med, og her vil de også bruke gevinsten, som er på 300 000 kroner.

– Vi omstiller norsk næringsliv og vil fortsette med det innenfor helsenæringen. Vi vil bruke gevinsten på å fortsette med det, og på å bedre nettverket mellom klyngene i Norge og Norden, sier Klem.

Oslo Cancer Cluster Incubator kom til finalen sammen med MacGregor Norway og Protomore Kunnskapspark.

– De tre finalistene er formidable nyskapingsmiljøer som i vår bok alle er vinnere. De har på hver sin måte vært pådrivere for nyskaping og bidratt til den omstillingen og utviklingen som næringslivet i Norge er så avhengig av. Når det er sagt vil jeg på vegne av Siva gratulere Oslo Cancer Cluster Incubator med en velfortjent seier. Vi håper de fortsetter det gode og viktige arbeidet med å utvikle medisiner og bedre behandling for kreftpasienter, sier Ulf Hustad, som er prosjektleder for prisen, til Sivas nettside.


En viktig konferanse for inkubatorene

I år kom rekordmange deltakere på Siva-konferansen. De kom fra ulike inkubatorer og næringsklynger, og talte omkring 300 stykker. På konferansen fikk de presentert et nytt initiativ kalt Norsk katapult. Her skal 50 millioner kroner brukes på å etablere såkalte katapult-fasiliteter, testfasiliteter i overgangen mellom forskning og etablert industri.


Om Siva

Siva står for Selskapet for industrivekst SF. Det ble etablert i 1968 og er en del av det næringsrettede virkemiddelapparatet. Siva er statens virkemiddel for tilretteleggende eierskap og utvikling av bedrifter og nærings- og kunnskapsmiljø i hele landet, med et særlig ansvar for å fremme vekstkraften i distriktene. Hovedmålet er å utløse lønnsom næringsutvikling i bedrifter og regionale nærings- og kunnskapsmiljø.