Posts

Three students experimenting with fruit flies in a lab.

Operation fruit flies

Fruit flies are not only annoying little insects that appear when bananas are overripe. They are also popular research tools for cancer researchers.

 

The four pupils Kalina Topalova Casadiego, Ida Hustad Andresen, Andreas Bernhus and Dina Düring got to experience how cancer researchers look at fruit flies during their work placement in January.

 

“Let’s turn on the gas, and then I’ll put some fruit flies on the pad under your microscope.” Speaking is cancer researcher Lene Malrød who, together with her colleague Nina Marie Pedersen, is responsible for four pupils from Ullern Secondary School on work placements.

 

“Gosh! They’re moving,” proclaims one of the pupils.

 

But not for long. Soon, all the fruit flies are anaesthetised and, eventually, dead; then the pupils are tasked with surgically removing the ovaries of the female flies. It is easier said than done, even with the help of microscopes to enhance the tiny flies. Especially when the operating tools are two tweezers.

Fruit flies are kept in two test tubes

The fruit flies are kept in test tubes.

 

An exciting placement

It is the third day of the pupils’ work placement at the Institute for Cancer Research, located next to the school. For four days at the end of January, they have learnt about cancer research and which methods researchers use in their daily work.

 

“The work placement is not like we imagined,” says Kalina and Ida.

 

“There’s a lot more manual work than I would have thought, and then you realise how important research is through what we do,” says Ida.

 

She is the only one who is specialising in biology in combination with with other science subjects, and she finds this very useful when working in the lab together with researchers. The other three have had to catch up on the reading, but they all agree that it is very exciting.

 

“Yesterday, we learnt a lot about CRISPR, which is a new method for cutting and splicing genes. Media gives you the impression that this is a highly precise tool, but the researchers here say that a lot can go wrong, and that it’s not at all as precise as you might think,” says Ida.

A student looks at fruit flies under a microscope

The students look at the fruit flies under a microscope.

 

From Western Blot to flies

A total of twelve pupils were picked out for this work placement. They have been chosen based on motivation and grades, and they all have a wish to study something related to medicine or science after they finish upper secondary school.

 

The twelve students are divided into three groups with completely different activities and get to learn a number of different research methods. The group consisting of Ida, Kalina, Andreas, and Dina, for instance, is the only group which will have a go in the fly lab.

 

“Am I really supposed to remove the ovaries? I don’t see how,” one of the pupils say, equally discouraged and excited.

 

Andreas, on the other hand, is in complete control. First, he has separated the males and the females with a paint brush. He has then used the tweezers to remove the heads from the females, punctured the bottom to remove the intestines, and finally found the ovaries in the abdomen.

 

Lene gathers all the different body parts for the pupils to look at through a different microscope. These fruit flies are in fact genetically manipulated to glow in the dark – they are fluorescent.

 

If you are wondering why researchers use fruit flies as part of their research, you can read more about it in this article from Forskning.no (the article is written in Norwegian).

 

“It is so much fun to be here, and we are really lucky to get this opportunity,” says Dina on her way from the fly lab to another lab to carry out another experiment.

 

 

The pupils on the work placement have uploaded many nice photos and videos on Ullern Secondary School’s Instagram account – visit their account to see more from the placement.

KUR: En reise langs det elektromagnetiske spekteret

I kursserien Kompetanseutvikling i realfag (KUR), spør vi denne gangen: Er det farlig med stråling?

Hvordan påvirkes vi av trådløse nettverk?  Hvordan behandler man kreft med ioniserende stråling?

Stråling er en del av hverdagen vår på mange måter.  Det elektromagnetiske spekteret er også en gjenganger i mange læreplaner, både grunnskolen og i videregående skole.  Denne kurskvelden har det overordnede temaet “det elektromagnetiske spekteret”, og hvordan stråling påvirker liv og helse.

Vi tilbyr for første gang også en omvisning i strålingsbygget på Radiumhospitalet!

Hva er KUR? 

KUR er en serie med seminarer for lærere i videregående skole. Seminarene arrangeres av Ullern videregående skole og Oslo Cancer Cluster og foregår om ettermiddagen. Målet er å lære noe nytt, spennende og relevant for undervisningen sammen med både realister og andre lærere. Seminarene innledes med et foredrag av en forsker som forteller om ny forskning innen sitt felt.

Program

  • Registering, servering av mat og drikke, og mingling med gode kollegaer
  • Velkommen
  • Hvordan bruke matte og fysikk i kreftbehandling?
  • Kaffe og mingling
  • Høyspentlinjer og trådløs kommunikasjon-farlig eller ikke?
  • Q & A
  • Omvisning på avdeling for medisinsk fysikk på Radiumhospitalet

 

Opplegget er gratis, men du må melde deg på slik at vi vet hvor mange som kommer, og dermed kan beregne riktig i forhold til innkjøp av mat.

Klikk her å registrere

Having Chemistry with Chemistry

Interested pupils at Ullern Upper Secondary School arrive at laboratory 117 to learn alongside Dr. Bora Sieng, a chemist in Arctic Pharma. Dr. Sieng advocates for the importance of chemistry and encourages pupils to pursue a career in the exciting field of chemistry.

 

At nine o’clock in the morning, three boys eagerly gather outside laboratory room 117. They’re waiting for an exciting opportunity offered by the collaboration between Ullern Upper Secondary and Oslo Cancer Cluster. This opportunity provides pupils the chance to see how chemistry is used in a real-life setting (a biotech company). This allows pupils to apply what they have learned in the classroom and in their textbooks to real-life scientific problems, such as developing new therapies for diseases.

The door opens and Dr. Bora Sieng greets the students with a friendly smile and handshakes. Dr. Sieng, who has a PhD in organic chemistry and is project leader in Arctic Pharma, welcomes them in. Arctic Pharma is a small start-up company developing innovative anti-cancer drugs.

Reaction Action
When entering the lab, we can feel the excitement between the pupils, they are here to learn. Dr. Sieng asks the boys what level of chemistry the pupils have taken. They nervously, but excitedly respond that they haven’t taken advanced levels, but know basic organic chemistry. Thus, they’re put to work after going through some textbook examples and introductory concepts. It’s time for some chemistry cooking!

A Collaboration is Formed
Arctic Pharma relocated their chemistry laboratory temporarily to Ullern in April. Dr. Sieng has been using the laboratory since then. He offers some insight into the new collaboration between Arctic Pharma and Ullern Upper Secondary School.

– For the past few months, I have had the opportunity to carry out my work using the facilities at Ullern through Arctic Pharma’s Collaboration with the school. I feel the school collaboration is a win-win for Arctic Pharma and the pupils at Ullern. Arctic Pharma is committed to introduce pupils to organic chemistry from a company’s perspective. This provides the students with the chance to get a feel of what it is like to work in a biotech company and to see how their education can be applied.

Chemistry is Exciting
When asked why exactly the pupils should learn chemistry, Dr. Sieng responds with this:

– Organic chemistry is fascinating! It can have many applications such as drug design and development, cosmetics, material development in, for example, rubber, plastics, detergents and paints as well as production of chemicals used in agriculture, to name a few examples.

Next Generation
At Arctic Pharma, Dr. Sieng works in a team of scientists that specialize in different fields important for drug design and development. As a medicinal organic chemist, Dr. Sieng is passionate about his work, and hopes to inspire the new generation of chemists.

–  To keep Norway a world innovator, the field of chemistry is important and we especially need to nourish the next generation of chemists and scientists, hence this collaboration is also important for our country.

Essentially, we need to ensure a future for Norway that will continue to thrive, construct and further the research that will help us continue down the path of innovative discovery. Such a future can only be secured if we continue to unlock the potential that chemistry offers us; a future waiting to be unlocked by the next generation.

A Constant State of Liveliness

A driving force behind the collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster is stepping down. This is her adventure.

After fifteen great and productive years at Ullern Upper Secondary School, Esther Eriksen steps down from her position as vice principle in the upcoming month. Esther, who has been responsible for many various tasks in her position, has been a part of Ullern’s transformative experience alongside Oslo Cancer Cluster’s emergence in 2009 and recounts her time at Ullern.

A flourish of innovation
Esther Eriksen describes the transformation and unification of Ullern Upper Secondary School and Oslo Cancer Cluster as being a progression from a strong belief in it’s potential to a flourish of innovation.

The collaboration has become a constant state of liveliness: from pupils attending classes, to research, to teamwork and a continuous process of growth.

Since 2009, the school and the cluster, with all its member companies and institutions, has unified to produce a collaborative arena for the pupils. This is an experience Eriksen describes nothing short of “wonderful, educational and groundbreaking”.

Diversity in teamwork
– The collaborative experience is incredible due to the pupils’ ability to take in experience in regards to teamwork. Not to mention they learn how knowledge from books can be translated to hands on work and ultimately get a feel for what life has in store for them, says Eriksen.

Esther Eriksen describes her own experience as being much of the same, and stresses the notion of working as a team.

– Diversity in teamwork is really important! We see this from well-received results and happy pupils, says Eriksen.

Future potential
In regards to the future of this collaboration, Vice Principle Eriksen expresses her desire to see the school continue down the path it has set out on. She wants to see the pupils continue to learn, gain opportunities and continue to work collaboratively.

– I wish the pupils would gain further awareness of the potential this unification brings, and hope to see increased interest in teamwork as an integrity.

The best of moments
Esther Eriksen also shares what she would consider the best moments of her time at Ullern, of which these were her favorite:

  1. When the new school first opened in the Oslo Cancer Cluster Innovation Park in 2015 – hard work finally turned to fruition
  2. Seeing how happy and motivated the pupils are when they do projects with scientists, businesses and hospitals in the cluster
  3. The emergence of vocational studies, such as electronics and health care studies, at Ullern Upper Secondary School

To conclude, Vice Principle Eriksen would like to leave the school and her colleagues this message: that she will continue to observe and follow the thriving development taking place at Ullern Upper Secondary School.

– This is only the beginning!

 

Portfolio Items