Doctor examining the birthmark of a female patient

Promising start for expansion group of Targovax clinical trial

Targovax, one of the members of Oslo Cancer Cluster, has begun an expansion patient group in the clinical trial of a drug to treat skin cancer.

The company Targovax is developing immune activators to target solid tumours that are difficult to treat. The drug in question, called ONCOS-102, is aimed at patients with malignant melanoma (skin cancer) who have either been through chemotherapy, biological therapy or surgery and experienced a recurrence or progression of the cancer.

 

How does it work?

The immune activators work by activating the patient’s own immune system to attack the cancer cells. The drug that is now being tested is a genetically modified oncolytic adenovirus, a type of virus that has been designed to infect in the cancer cells and then replicate.

 

Initial positive results

targovax logo

Targovax, a member of the Oslo Cancer Cluster, are developing a treatment for skin cancer.

In September 2018, the first six patients had been treated with 3 injections of the drug and all of them showed a strong activation of their immune systems – one patient even had a complete response. The results suggested that the patients could benefit from more injections of the drug.

“The results seen to date with only three injections of ONCOS-102 are promising, and we are confident that by increasing to twelve injections we will release the full potential of ONCOS-102 to reactivate these patients to respond to Keytruda treatment,” said Magnus Jäderberg, CMO of Targovax.

 

Expansion patient group

On 11 February 2019, the first patient in the expansion group of the phase I trial was injected with ONCOS-102. The patient will be treated in combination with pembrolizumab, also known as Keytruda, an immunotherapy drug that works as an immune checkpoint inhibitor. This means that the drug involves antibodies, which “unlock” the protective mechanisms of the cancer cells so the immune system then can destroy them.

 

For more information, read the full press release from Targovax.

New collaboration aims to treat cervical cancer

The companies Vaccibody and Roche have started a new collaboration to investigate a drug combination to treat patients with advanced cervical cancer.

Both companies are members of Oslo Cancer Cluster and are involved in the development of novel cancer treatments.

Martin Bonde, CEO of Vaccibody, said: “We are very pleased with this collaboration. This is an important study as it explores a novel targeted treatment approach that addresses the high medical need of patients with advanced cervical cancer.”

Cervical cancer is the most commonly occurring cancer among women in developing countries and is the second most commonly occurring cancer amongst women worldwide.

Vaccibody is a vaccine company that aims to develop and discover new immunotherapies to treat difficult forms of cancer. They have developed a therapeutic DNA vaccine that treats cancers caused by HPV (the human papillomavirus).

Cervical cancer is caused by high risk HPV. HPV16 is the type that most frequently causes cancer.

Immunotherapy is a type of cancer treatment that aims to switch on a patient’s immune system to kill cancer cells.

Roche is a healthcare company that has developed an immune-checkpoint inhibitor. Now Vaccibody wants to test their vaccine in combination with the immune-checkpoint inhibitor designed by Roche.

An immune checkpoint inhibitor is a type of drug that blocks certain proteins made by some types of cancer cells. When these proteins are blocked, the “brakes” on the immune system are released and T cells are able to kill cancer cells better.

Agnete Fredriksen, President and CSO of Vaccibody, said that the combination of the two drugs build on the positive results seen when their vaccine has been used on patients with cervical cancer. Therefore they now expect to see positive results when they combine the vaccine with an immune checkpoint inhibitor.

During the second half of 2019, Vaccibody expects to begin the phase II study, which will involve 50 patients. It will assess the safety of the drug, its ability to invoke a response in the immune system, how the patients tolerate it and how efficient the drug is. The group for this new drug combination involves patients with advanced cervical cancer.

 

Raised NOK 230 million

Vaccibody also raised NOK 230 million (EUR 23.6 Million) in a private placement the same week. The sum was indeed placed all within one day, according to Agnete Fredriksen.

The proceeds from the share sales will be used to conduct the phase II clinical study of the drug combination from Vaccibody and Roche. The money will also go to the preparation of expansion patient groups in Vaccibody’s clinical trials and to generate corporate purposes.

 

For more information, read the press release from Vaccibody.

 

Three students experimenting with fruit flies in a lab.

Operation fruit flies

Fruit flies are not only annoying little insects that appear when bananas are overripe. They are also popular research tools for cancer researchers.

The four pupils Kalina Topalova Casadiego, Ida Hustad Andresen, Andreas Bernhus and Dina Düring got to experience how cancer researchers look at fruit flies during their work placement in January.

“Let’s turn on the gas, and then I’ll put some fruit flies on the pad under your microscope.” Speaking is cancer researcher Lene Malrød who, together with her colleague Nina Marie Pedersen, is responsible for four pupils from Ullern Secondary School on work placements.

“Gosh! They’re moving,” proclaims one of the pupils.

But not for long. Soon, all the fruit flies are anaesthetised and, eventually, dead; then the pupils are tasked with surgically removing the ovaries of the female flies. It is easier said than done, even with the help of microscopes to enhance the tiny flies. Especially when the operating tools are two tweezers.

Fruit flies are kept in two test tubes

The fruit flies are kept in test tubes.

 

An exciting placement

It is the third day of the pupils’ work placement at the Institute for Cancer Research, located next to the school. For four days at the end of January, they have learnt about cancer research and which methods researchers use in their daily work.

“The work placement is not like we imagined,” says Kalina and Ida.

“There’s a lot more manual work than I would have thought, and then you realise how important research is through what we do,” says Ida.

She is the only one who is specialising in biology in combination with with other science subjects, and she finds this very useful when working in the lab together with researchers. The other three have had to catch up on the reading, but they all agree that it is very exciting.

“Yesterday, we learnt a lot about CRISPR, which is a new method for cutting and splicing genes. Media gives you the impression that this is a highly precise tool, but the researchers here say that a lot can go wrong, and that it’s not at all as precise as you might think,” says Ida.

A student looks at fruit flies under a microscope

The students look at the fruit flies under a microscope.

 

From Western Blot to flies

A total of twelve pupils were picked out for this work placement. They have been chosen based on motivation and grades, and they all have a wish to study something related to medicine or science after they finish upper secondary school.

The twelve students are divided into three groups with completely different activities and get to learn a number of different research methods. The group consisting of Ida, Kalina, Andreas, and Dina, for instance, is the only group which will have a go in the fly lab.

“Am I really supposed to remove the ovaries? I don’t see how,” one of the pupils say, equally discouraged and excited.

Andreas, on the other hand, is in complete control. First, he has separated the males and the females with a paint brush. He has then used the tweezers to remove the heads from the females, punctured the bottom to remove the intestines, and finally found the ovaries in the abdomen.

Lene gathers all the different body parts for the pupils to look at through a different microscope. These fruit flies are in fact genetically manipulated to glow in the dark – they are fluorescent.

If you are wondering why researchers use fruit flies as part of their research, you can read more about it in this article from Forskning.no (the article is written in Norwegian).

“It is so much fun to be here, and we are really lucky to get this opportunity,” says Dina on her way from the fly lab to another lab to carry out another experiment.

 

The pupils on the work placement have uploaded many nice photos and videos on Ullern Secondary School’s Instagram account – visit their account to see more from the placement.

Audience at Cancer Crosslinks 2019

Top presentations from Cancer Crosslinks 2019

See them again or for the first time: videos from the Cancer Crosslinks 2019 presentations.

Cancer Crosslinks is Oslo Cancer Cluster’s annual, open conference for the Norwegian oncology community. It offers a full-day educational program featuring distinguished international and national experts presenting recent advances in precision oncology and cancer immunotherapy.

More than 300 participants joined Cancer Crosslinks on 17 January 2019 and enjoyed excellent talks and discussions presented by leading international oncologists and researchers and their Norwegian colleagues.

 

The speakers’ top topics

The speakers discussed new insights into sensitivity and resistance and features of the tumour microenvironment critical for the clinical course. They also discussed emerging tissue agnostic biomarkers, where «tissue agnostic” refers to the ability to develop therapies based upon biomarkers or other molecular targets to treat a disease. A biomarker is a measurable indicator of a biological state or condition.

Other topics were learnings from cancer molecular evolution studies, and how big data approaches are used to improve patient care. Together with an engaged audience, the presenters were really connecting the dots for improved patient care in precision oncology.


Professor Naiyer Rizvi
, Director of thoracic oncology and of immunotherapeutics for the division of haematology and oncology at Columbia University Medical Center, New York, gave the opening keynote in the form of a video presentation. He is an internationally recognized leader in the treatment of lung cancer and immunotherapy drug development.

In his presentation, titled: “Sensitivity and resistance to immuno-oncology: Biological insights and their translation into precision treatment”, Prof. Rizvi also addressed the question “What happens when the doctors expect the patient to respond to immunotherapy, but then the patient does not?”

WATCH PROF. RIZVI

Professor Rizvi

 

Dr. Aaron Goodman, MD, is a haematologist and medical oncologist specialized in treating a variety of blood cancers. He holds a position as Assistant Professor of Medicine at the Moores Cancer Center at UC San Diego Health in La Jolla, California.

During his talk, Dr. Goodman presented tumour mutational burden and other emerging tissue agnostic biomarkers for response to cancer immunotherapy and how to implement these into the clinic. He also spoke about his experience from the Rare Tumour Clinic in San Diego, where they perform a comprehensive molecular profiling for about 22-25% of cancer patients with rare tumours. The goal is to identify a matching therapy for each patient.

After his presentation, Dr. Goodman commented to Oslo Cancer Cluster:

“We started by doing data collections and help patients and learn at the same time. It is a benefit that we at least have the patient’s data and experience with that patient so that we can go forward and help the next patient.” Aaron Goodman

WATCH DR. GOODMAN

Dr Goodman

 

Dr. Randy F. Sweis is an Assistant Professor in the haematology/oncology section at the University of Chicago. He works with cancer immunology, developmental therapeutics and biomarkers, with a clinical interest in phase 1 clinical trials and genitourinary malignancies. His laboratory research involves the identification and targeting of tumour-intrinsic immunotherapy resistance pathways.

During Cancer Crosslinks, Dr. Sweis presented his work on immunophenotypes: “The T cell-inflamed tumour microenvironment as a biomarker and its clinical implications.”

WATCH DR. SWEIS

Dr. Sweis

 

Dr. Marco Gerlinger is a clinician scientist at the Center for Evolution and Cancer at the Institute of Cancer Research in London and a consultant Medical Oncologist in the GI Cancer Unit at Royal Marsden Hospital. He develops novel techniques to detect and track intra-tumour heterogeneity in solid tumours to define evolutionary plasticity and common evolutionary trajectories in cancers. Cancer cell plasticity is the ability of cancer cells to change their physiological characteristics.

Dr. Gerlinger shared the latest insights into cancer evolution and discussed the limits of predictability in precision cancer medicine. How can clinicians and researchers exploit important data on tumour development?

During his visit in Oslo, Dr. Gerlinger commented: “We have had fantastic discussions with an audience that is really well informed and brings up the challenges we are facing and the research we are doing.”

“This is the first time I have given a talk in Norway and obviously there is a lot going on here. I am already thinking about some collaborations, because there are some interesting advantages here through big tumour banks and cancer registries.” Dr. Marco Gerlinger

WATCH DR. GERLINGER

Dr Gerlinger

 

 

Professor Dr. med. Lars Bullinger is Professor of Hematology and Oncology and Medical Director of the Department of Hematology, Oncology and Tumor Immunology at Charité University Medicine Berlin.

He is a partner in the Innovative Medicines Initiative project HARMONY (Healthcare alliance for resourceful medicines offensive against neoplasms in haematology) aiming to use big data to deliver information that will help to improve the care of patients with haematologic cancers.

In his keynote speech he presented the “best of hematology from 2018” to the Cancer Crosslinks audience. He also addressed emerging therapeutic opportunities and the impact of big data for precision treatment in haematology.

WATCH PROF. DR. MED. LARS BULLINGER

Lars Bullinger

 

James Peach is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, UK. Prior to this role, he was the Managing Director at the main programme for Genomics England from 2013 to 2017. He presented his perspectives on the implementation of precision medicine in the UK and discussed the status, lessons learned and the way forward.

WATCH JAMES PEACH

James Peach


The expert panel
You can read more about how the Norwegian expert panel reacted to James Peach’s presentation and the state of precision medicine in Norway in the article below, also from Cancer Crosslinks 2019. The article contains a video of the panel debate.

Getting genomics into healthcare: look to the UK