Posts

Håvard Danielsen

AI researcher gets cancer award

Professor Håvard Danielsen has received a cancer research award for the use of artificial intelligence (AI) to improve cancer prognosis.

King Olav Vs Cancer Research Award of 2022 has been granted to Professor Håvard Danielsen at the Institute for Cancer Genetics and Informatics (ICGI) at Oslo University Hospital.

“This is a huge recognition and an inspiration. I am proud to join the 29 cancer researchers that have received the prize before me,” Danielsen commented.

The prestigious prize is awarded annually by the Norwegian Cancer Society, and it is the highest honour for Norwegian cancer researchers.

The description states: “Danielsen is a pioneer and a world-leading expert in digital pathology and the development of new methods for the application of artificial intelligence”.

Ground-breaking AI research

Simply explained, Danielsen and his research team at ICGI have trained computers to recognise cancer tumours, their characteristics and the patient’s prognosis, by feeding the computer with millions of images of samples from tumours of cancer patients.

“We have used machine learning to automate cancer diagnostics and prognosis. We have developed new methods to give a more objective diagnosis,” said Danielsen.

There are three reasons for this.

  1. Cancer diagnoses are made by pathologists, and the number of pathologists is declining while the number of cancer cases rise.
  2. It is difficult for pathologists to determine the disease progression of the patient. This leads to many patients getting too much treatment or too little treatment, which is both expensive for society and damaging to the individual.
  3. Tumours are very heterogeneous, more efficient methods to investigate more samples from each tumour are needed.

Artifical intelligence may drastically change the field of cancer pathology by offering new and objective methods that can easily be distributed as a supplement to the current practise.

Results from histotyping projected onto the histological slide being analysed.

This is a heatmap showing the result of the computer analysis in each part of the cancer sample. Photo: ICGI.

The research has mainly focused on colorectal cancer. However, the exact same technology and design can be applied to other cancer types too. The research group has already had positive results for prostate cancer and are now working on lung cancer.

“Instead of spending many years training a pathologist, you can simply copy the algorithm from one computer to another. A computer can work 24 hours a day, doesn’t make mistakes and doesn’t get tired. This is not a replacement of the pathologist, but a tool to help the pathologist,” said Danielsen.

From research to commercial product

The research is part of the DoMore project, a five-year project that was awarded NOK 60 million by the Norwegian Research Council as a trailblazer for connecting IT technologies in health.

“There were huge anticipations. We were expected to break new ground, act as an inspiration, and create new jobs for Norway. This was an opportunity you don’t get every day,” Danielsen said.

The partners in the DoMore project were Oslo Cancer Cluster, the Vestfold Hospital Trust, the University of Oxford, the University College London, DIPS, the Department of Informatics at Oslo University Hospital, and the Institute for Cancer Genetics and Informatics at Oslo University Hospital. Around 50 people have worked with DoMore so far.

“This is truly a team effort across Norwegian and international institutions, and with many people involved. I feel privileged to have led this project,” Danielsen commented.

After five years of intense research, DoMore published their results in the academic journal The Lancet two years ago. At the same time, the company DoMore Diagnostics was established, and they are now a member of Oslo Cancer Cluster.

The video below was produced by ICGI when the company was set up.

“Oslo Cancer Cluster, OCC, has played a central role in the project, from start to finish.” Danielsen said.

“Ketil Widerberg, general manager of OCC, has been one of the leaders of DoMore. His responsibility has been to ensure that we develop solutions that can be commercialised. He has participated in all discussions and nudged us in the right direction. The company DoMore Diagnostics is a direct result of OCC’s involvement in the project,” Danielsen continued.

Danielsen also believes having Oslo Cancer Cluster as a partner from the start helped convince the Norwegian Research Council to back the project, which made everything possible.

Danielsen and his research group are still working hard to invent new solutions for better, more accurate cancer prognosis, which the company DoMore Diagnostics aim to take to market.

Photo of the audience at the opening of EHiN 2019.

EHiN 2019 – highlights

Did you miss EHiN this year? Or simply want to catch up on the highlights relating to cancer research? Read our short summary below.

EHiN, short for e-health in Norway, is Norway’s national conference on e-health. It is a meeting place where decision-makers, the business community and the health sector gather to talk, share knowledge, learn from each other and collaborate.

This year, Oslo Cancer Cluster became a co-owner of EHiN (together with ICT Norway and Macsimum), because we believe new technologies and digital solutions are essential in the development of novel cancer treatments. This will only be possible if public and private organizations find new models of collaboration and EHiN is a great platform to create those future partnerships.

Read this interview to find out more about how new technologies can improve cancer research

 

Photo from the panel discussion on health data at EHiN 2019.

A conversation on health data during day 1 of EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Capturing the value of health data

An engaging dialogue on the value of health data took place at the end of the first day.

Health data will revolutionize how we understand and how we treat diseases, such as cancer. Better diagnosis and monitoring will change how we design our healthcare systems. A central question is how we capture the value of this revolution. Some fear multinationals like Google and Facebook will exploit our unique health data for profit. Others fear that Norwegians will value and protect their health data too well, resulting in innovation happening elsewhere. Is there a golden mean between giving full access to health data and charging the highest price?

Ketil Widerberg, General Manager at Oslo Cancer Cluster, led the conversation with a panel of four. Joanne Hackett, Chief Commercial Officer at Genomics England, brought an international perspective and experiences of how they have collected 100 000 genomes from patients with rare diseases. Sigrid Bratlie, award-winning cancer researcher, shared her knowledge of new cancer treatments and the opportunities they present in conjunction with health data. Heidi Beate Bentzen, Doctoral Research Fellow at University of Oslo, represented some of the legal considerations when dealing with health data. Rajji Mehdwan, General Manager at Roche, contributed with the pharma industry perspective.

 

Photo of the expo area during EHiN 2019.

The crowded crowded expo area during EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Networking in the expo area

The expo area is the heart and soul of EHiN. This is where public and private organizations can meet under informal circumstances and create new partnerships. These collaborations are what lead to knowledge sharing and that digital solutions can be implemented in the health sector.

This year, a pharma company was present in the expo area for the very first time, our member Roche. Roche are investing more in genetic testing and personalized medicines than ever before. But why are genetic tests important for cancer treatments? Cancer is more than a disease, it is about the composition of DNA, RNA and proteins – and how these relate to one another. Every cancer tumor is therefore unique, but by finding out more about the genetic sequence, one can develop personalized treatments that target the tumor effectively.

In the expo area, a variety of start-ups, IT companies, health clusters, public organisations and academic institutions were also present. For two days, the area was buzzing with interactions, meetings and talks.

We hope you carry on the conversations and that we see all of you again next year!

Ketil Widerberg, general manager, Oslo Cancer Cluster.

Machine learning improves cancer research

This interview was first published on EHiN’s official website. Scroll down to read it in Norwegian.

 

EHiN is important in order to realise the opportunities that digital technologies can give patients, society and industry.

Ketil Widerberg is the General Manager of Oslo Cancer Cluster, which is a co-owner of EHiN 2019. We asked Ketil Widerberg a few questions about why digitalization and EHiN are important for cancer research.

–Can you describe in short what Oslo Cancer Cluster is and what you do?

Oslo Cancer Cluster is a non-profit member organization that gathers public and private players. The goal is to transform cancer research into treatments that change patients’ lives. We are a National Centre of Expertise (NCE).

–You are now co-owners of EHiN. What do you wish to achieve with that?

Oslo Cancer Cluster has the last ten years developed and established well-known meeting places (such as Cancer Crosslinks) by combining different disciplines. In the future, digitalisation and precision medicine (e-health) will be a central area in cancer research.

EHiN is a perfect match in this area. EHiN will be an important platform in order to realise the opportunities that digital technologies can give patients, society and industry.

–What do you think AI will mean for cancer research?

Today’s breakthroughs in treatment will often only work on 3 out of 10 patients. Artificial intelligence will change medicine in two ways. First, how we understand cancer. In the same way as the microscope gave us the ability to see things on a cellular level, data will now help us to see patterns we never would have discovered.

Second, how we treat cancer will change. We have to be ready to give the right treatment to the right patient at the right time. One way of giving individualised treatments is to recognize patterns – patterns that show how a patient will react from a treatment.

After that, you can see in larger groups of people if this pattern is repeated. Then, you select the patients that have a positive response to the treatment. This will, to begin with, not be a perfect method, but if you repeat this process, the modern machine learning systems can make it better and better.

–We know that health research takes time. How can digital solutions improve this?

Digitalisation will accelerate the development of new treatments in several areas. One area is clinical studies. Digital technology can help to adjust studies according to patient responses and enable digital control arms that shorten years off the developmental period. Digital solutions can make clinical trials more flexible and efficient, by reducing the administrative burden on companies and at the same time make it simpler for patients to enroll.

Gradually, as the volume and speed of the data increases, we have the opportunity to use new machine learning algorithms – such as deep learning. The algorithms can identify digital biomarkers that will give faster and better development of new treatments.

–Why is EHiN an important meeting place for Norway?

EHiN is relevant for Oslo Cancer Cluster because the IT revolution is about to hit the oncology field. Personalized treatments, genomics and the use of health data will soon develop into one of the most important areas of “e-health”. This is also an area that is of great interest for the IT industry, for data storing, data analysis, machine learning, pattern recognition, connecting different data sources, and so on.

At the same time, the technology will also impact the academic world and the pharmaceutical part of the health sector, and contribute to set the rules for the whole value chain in health processes in decades to come. EHiN wishes, in collaboration with Oslo Cancer Cluster, to build Norway as an important international hub in the area of e-health – by gathering and showcasing the different activities at the conference and in other settings.

 

–Selvlærende datasystemer gjør kreftforskning stadig bedre

EHiN er ifølge Ketil Widerberg viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet. Widerberg er daglig leder for Oslo Cancer Cluster, som i høst 2018 gikk inn som medeier av EHiN.

Vi stilte Ketil Widerberg noen spørsmål om hvorfor digitalisering og EHiN er viktig for kreftforskning.

–Kan du beskrive kort hva OCC er og hva dere gjør?

OCC er en non-profit medlemsorganisasjon som samler offentlige og private aktører. Målet er å gjøre kreftforskning til produkter som endrer pasienters liv. Vi er et NCE (National Centre of Expertise).

Dere har blitt med på EHiN. Hva ønsker OCC å oppnå med det?

Oslo Cancer Cluster har de siste 10 årene utviklet og etablert anerkjente møteplasser (som Cancer Crosslinks) ved å kombinere forskjellige fag-grener. Fremover vil digitalisering sammen med presisjonsmedisin (e-Helse) være et sentralt område innenfor kreft.

EHiN er en perfekt match for dette området. I tråd med OCC sin strategi vil EHiN være viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet.

–Hva tror du AI kan bety for forskning rundt kreft?

Dagens behandlingsgjennombrudd vil ofte bare virke på 3 av 10 pasienter. Kunstig intelligens vil endre medisin på to måter. Hvordan vi forstår kreft. På samme måte som mikroskopet ga oss evnen til å se helt ned på cellenivå, vil data nå hjelpe oss til å se mønster vi aldri ellers ville oppdaget.

Hvordan vi behandler kreft vil forandre seg. Vi må derfor klare å gi den rette behandlingen til den rette pasienten til rett tid. En måte å kunne gi individbasert behandling er å gjenkjenne mønster. Mønster som viser hvordan en pasient vil reagere på en behandling.

Deretter se i større grupper mennesker om dette mønsteret gjentar seg. Da kan man plukke ut de pasientene med positivt utbytte av behandlingen. Dette vil i begynnelsen ikke være en perfekt metode, men hvis man gjentar denne prosessen, kan moderne selvlærende datasystemer gjøre den stadig bedre.

–Vi vet at helseforskning tar lang tid. Hvordan kan digitale løsninger bidra på dette?

Digitalisering vil akselerere utviklingen av ny behandling på flere områder. Ett område er kliniske studier. Digital teknologi kan gjøre at studier justeres etter respons og muliggjøre digitale kontrollarmer som korter år av utviklingstiden. Kliniske forsøk kan bli fleksible og effektive ved å redusere administrative byrder på firmaer, og samtidig gjøre det enklere for pasientene.

Etter hvert som volumet og hastigheten på data øker, har vi mulighet til å bruke nye maskinlæringsalgoritmer – som dyplæring. Det kan identifisere digitale biomarkører som vil kunne gi raskere og bedre utvikling av ny pasientbehandling.

–Hvorfor er EHiN en viktig møteplass for Norge?

EHiN er faglig relevant for OCC fordi IT-revolusjonen er i ferd med å slå inn på onkologi feltet. Persontilpasset medisin/behandling, genetikk og bruk av helsedata vil snart utvikle seg til et av de viktigste områdene innen “e-helse”. Dette er også et område som er av stor interesse for IT-bransjen (datalagring, analyse, machine learning, mønstergjenkjenning, kobling av ulike datakilder osv.).

Samtidig vil teknologien også få konsekvenser for den akademiske verden, samt den farmasøytiske delen av helsesektoren, og bidra med å legge rammene for hele verdikjeden i helseprosessene i tiårene fremover. EHiN ønsker, i samarbeid med OCC, å bygge Norge som en viktig internasjonal hub på området e-Helse ved å samle og vise frem ulike aktiviteter på konferansen og også i andre sammenhenger.

 

Sign up to OCC monthly newsletter