Posts

Meet the mentors

Read the questions and answers from when the students at Ullern Upper Secondary School met their mentors for the very first time.

In the middle of October, 32 students at the researcher program at Ullern Upper Secondary School got to meet their four mentors for the next year. After a short introduction, there were many questions from the students to the mentors. It took an hour and a half before their curiosity settled down and it was time for pizza.

Simone Mester: “I am a former student of Ullern Upper Secondary School and now I am doing a PhD in molecular biology. In the long term, I could imagine working in the private sector developing pharmaceuticals.”

Øyvind Kongstun Arnesen: “I am a doctor and worked many years in Lofoten. After that, I worked some years as a surgeon in an emergency room, before I began working for a large German pharmaceutical company called Boehringer Ingelheim. Eight years ago, I became CEO for Ultimovacs. Ultimovacs are trying to develop the worlds first cancer vaccine.”

Jónas Einarsson: “I am a doctor, and did the first part of my medical degree on Iceland, because my grades weren’t the best. Then, I worked many years as a general practitioner in Lardal, before moving to Oslo and becoming the manager of the first private hospital in Norway. In parallel with this, I did a degree in economy and management at BI. Finally, I became the CEO of Radforsk, who among other things, initiated the Oslo Cancer Cluster Innovation Park and this school collaboration.”

Bjørn Klem: Bjørn is the fourth mentor, but he was unfortunately ill during the first meeting. Janne Nestvold, Laboratory Manager at Oslo Cancer Cluster Incubator, came in his place. Nestvold has a PhD and has worked as a researcher for many years.

 

After the introductions, the teachers at the researcher program, Ragni Fet and Monica Flydal Jenstad held a short presentation of the upcoming work with the mentors.

Then, there were several questions from the audience.  We were really impressed by the amount and quality of the questions, that concerned both education, job opportunities and, research and development, which both Kongstun and Mester are a part of. The questions rained down and the answers came in a session that continued for over an hour and a half. You can read some of them below. Then it was time for some pizza and mingle.

The next time the students and the mentors will meet will be in the beginning of December. The students will meet in the mentors’ workplaces and see with their own eyes what they do on an everyday basis.

 

Questions and answers:

What kind of medical specialisation does Jónas and Øyvind have?

“We are both general practitioners and have not specialised. You do not have to.”

 

What kinds of jobs can you do after you are finished, Simone?

Simone: “I can do a postdoc to become a researcher in academia. I am still a student while I am doing my PhD, but I receive a salary. It is normal to do two postdocs, then you can become group leader or professor. I don’t think I will follow that route, I would much rather work in a private company or start something myself. I think that seems more exciting.”

Jónas: “Simone will get a job immediately in one of our companies if she wants it.”

 

Are there many developments every day to find a cancer vaccine?

Jónas: “It takes time, so the short answer is no.”

 

What is the greatest challenge with the cancer vaccine that Ultimovacs are developing?

Øyvind: “To make it work? A good and difficult question.”

Øyvind explained further about the development and testing of the vaccine at Ultimovacs.

 

What is your PhD about, Simone?

Simone: “I develop technology that prolongs the half-life of medicines. It is a patient-focused PhD, since it is a big inconvenience for the patient to take medicines often, but I hope we can succeed in prolonging the half-life so that patients can take the medicine once a week or once a month.”

 

What should one study if one wants to work with medical development or pharmaceutical development?

Jónas: “Molecular biology, physiology, IT, physics, chemistry, biology, statistics  – there are many opportunities.”

Øyvind: “In our company, we have physiologists, doctors, protein chemists, dentists and pharmacists working right now.”

 

When you went to upper secondary school, did you know that you would be doing what you do today?

Jónas: “I chose the natural science, but did not know anything else.”

Øyvind: “I only knew I wanted to study natural science.”

Simone: “I was thinking about studying a medical degree, but I am happy that I chose molecular biology.”

Janne: “I thought about becoming a researcher and thought it seemed exciting. You should absolutely think widely and not just the easiest solution when you are still in upper secondary school. You will benefit from that when you begin to study at university.”

 

Have you always been interested in biology, or was there something special you saw that made you excited about it? 

Jónas: “Yes, always.”

Øyvind: “Biology in itself is very fascinating. There is so much we do not know, like where memories are stored in the brain, for example. We know very little about how the body works, so that is very fascinating.”

 

The cancer vaccine you are developing, will it work against all cancers or only specific types of cancer?

Øyvind: “It will work to treat and protect against most cancer types.”

 

What did Bjørn do in PhotoCure, the company he worked for before becoming manager for Oslo Cancer Cluster Incubator?

Jónas: “He was Head of Research. He is a very smart guy, and he has also worked a lot with the regulatory side.”

 

Educating the cancer researchers of tomorrow

Ullern Upper Secondary School and Oslo Cancer Cluster are paving the way for students to become the researchers of the future.

A new program has been launched this autumn for Ullern students who wish to learn how researchers work. It will qualify students for university studies and specialise them in biomedical research, technology and innovation. It is the only researcher program for upper secondary school in Norway.

“The researcher program at Ullern will be a place where students are encouraged and guided to become independent students, with a need to explore, an understanding of methods and a desire to learn,” said Ragni Fet, teacher at Ullern Upper Secondary School. “They will learn to gather good and reliable information, they will do research in practice through varied experiments, and they will gain real insight into job opportunities in the research industry.”

The program is a joint initiative between Oslo Cancer Cluster and Ullern Upper Secondary School, who have been collaborating since 2009. This has offered students in the natural sciences, health, media and electricity special opportunities to learn science subjects outside a traditional classroom setting.

“The purpose of launching a researcher program at Ullern Upper Secondary School is to recruit the researchers, scientists and entrepreneurs of the future,” said Bente Prestegård, Project Manager at Oslo Cancer Cluster. “We know that these jobs are needed, and we want to teach students about what it means to be a researcher or entrepreneur. With better insight into the professions, the students will be able to make a safe career choice.”

 

With a passion for science

About 30 students have already begun this unique program at Ullern Upper Secondary School. One of them is Henrikke Thrane-Steen Røkke.

“I chose the researcher program because I personally enjoy studying the natural sciences and innovation, and I wanted more of those subjects. I had entrepreneurship as an elective at secondary school and thought it was a lot of fun. I think it seemed very exciting and wanted to learn more,” Henrikke explained. “I hope I can gain insight into what it is like to work as a researcher. I hope we can see and experience a lot of it in practice and to work in depth with some subjects in certain areas.”

The program is especially well suited for students with an interest in the natural sciences, such as Peder Nerland Hellesylt, who also recently begun the program.

“I applied to this program because I have always had an interest for the natural sciences and mathematics,” Peder said. ”I think this program is very interesting because we aren’t just sitting and writing, but get practical tasks too, for example experiments.”

 

Mixing theory with practice

Ullern Upper Secondary School is located right next to The Norwegian Radium Hospital, The Institute for Cancer Research, The Norwegian Cancer Registry and the Oslo Cancer Cluster Incubator, with its over 30 big and small companies. The students are therefore never far from world class researchers. This offers the unique opportunity to take advantage of the co-localisation and use mentors from the research milieu in the teaching.

“Through the collaboration with Oslo Cancer Cluster, we will obtain external lecturers to the class rooms; bring the students to multiple, exciting innovation companies and laboratories; and the students will attempt real research experiments themselves. We are raising the level and are ambitious for the sake of the students,” Ragni Fet said.

 

Sign up to OCC newsletter

Learning about the human brain

Oslo Cancer Cluster and Ullern Upper Secondary School arranged a work placement for students to learn about neuroscience at the University of Oslo.

Four biology students from Ullern Upper Secondary School spent two great days on work placement with some of the world’s best neuroscientists at the University of Oslo. In Marianne Fyhn’s research group, the students tried training rats and learned how research on rats can provide valuable knowledge about the human brain.

The Ullern students, Benedicte Berggrav, Lina Babusiaux, Maren Gjerstad Høgden and Emmy Hansteen, first had to dress in green laboratory clothes, hairnets and gloves. They also had to leave their phones and notepads behind, before enterring the animal laboratory where Marianne Fyhn and her colleagues work. Finally, they had to walk through an air lock that blew the last remnants of dust and pollution off them.

On the other side was the most sacred place for researchers: the newly refurbished animal laboratory. It is in the basement of Kristine Bonnevies Hus on the University of Oslo campus. We used to call it “Bio-bygget” (“the bio-building”) when I studied here during the ‘1990s.

 

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

It is the second day of the students’ work placement with Marianne. The four biology students, who normally attend the second year of Ullern Upper Secondary School, have started to get used to their new, temporary jobs. They are standing in one of the laboratories and looking at master student Dejana Mitrovic as she is operating thin electrodes onto the brain of a sedated rat. PhD student Malin Benum Røe is standing behind Dejana, watching intently, giving guidance and a helping hand if needed.

“We do this so we can study the brain cells. We will also find out if we can guide the brain cells with weak electrical impulses. This is basic scientific research. In the long term, the knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm,” Marianne explained.

“The knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm.”

Dejana needs to be extremely precise when she connects the electrodes onto the rat’s brain. This is precision work and every micrometre makes a difference.

 

Training rats

The previous day, Maren, Benedicte, Lina and Emmy helped to train the rat on the operating table on a running course. Today, the Ullern students will train the other rats that haven’t had electrodes surgically connected to their brains yet.

“We will train the rats to walk in figures of eight, first in one direction and then the other”, the students explained to me.

We remain standing in the rat training room for a while, talk with Dejana and train some of the rats. Dejana tells me that the rats don’t have any names. After all, they are not pets, but they are cared for and looked after in all ways imaginable.

“It is very important that they are happy and don’t get stressed. Otherwise, they won’t perform the tasks we train them to do,” says Dejana. She and the other researchers know the animals well and know to look for any signs that may indicate that the rats aren’t feeling well.

“It is very important that they are happy and don’t get stressed.”

I ask the students how they feel about using rats for science.

“I think it is completely all right. The rats are doing well and can give us important information about the human brain. It is not okay when rats are used to test make-up and cosmetics, but it is a whole different matter when it concerns important medical research,” says Emmy and the other biology students from Ullern nod in agreement.

 

Understanding the brain

Marianne is the head of the CINPLA centre at the University of Oslo, where Maren, Benedicte, Lina and Emmy are on work placement for two days. Four other Ullern students, Henrik Andreas Elde, Nils William Ormestad Lie, Hans Christian Thagaard and Thale Gartland, are at the same time on a work placement with Mariannes research colleague, Professor of Physics Anders Malthe-Sørenssen. They are learning about methods in physics, mathematics and programming that help researchers to better understand the brain.

“CINPLA is an acronym for Centre for Integrative Neuroplasticity. We try to bring together experimental biology with calculative physics and mathematics to better understand information processing in the brain and the brain’s ability to change itself,” says Marianne.

Physics, mathematics and programming are therefore important parts of the researcher’s work when analysing what is happening in the rat’s brain.

If you think that research on rats’ brain cells sounds familiar, then you are probably right. Edvard and May-Britt Moser in Trondheim received the first Norwegian Nobel Prize in Medicine in 2014. The award was given to them for their discovery of a certain type of brain cells, so called grid cells. The grid cells alert the body to its location and how to find its way from point A to point B.

Marianne did her PhD with Edvard and May-Britt, playing an essential role in the work that led to the discovery of the grid cells. Marianne was therefore very involved in Norway securing its first Nobel Prize in Medicine.

 

The dark room

Another room in the animal section is completely dark. In the middle of the room, there is an enormous box with various equipment. In the centre of the box, there is a little mouse with an implant on its head.

In this test room, there is an advanced microscope. It uses a laser beam to read the brain activity of the mouse as it alternates between running and standing still on a treadmill.

The researcher Kristian Lensjø is back from a longer study break at the renowned Harvard University and will use some of the methods he has learned.

“I will train the mouse so that it understands that for example vertical lines on a screen mean reward and that horizontal lines give no reward. Then I will look at which brain cells are responsible for this type of learning,” says Kristian.

The students stand behind Kristian and watch the mouse and the computer screen. When the testing begins, they must close the microscope off with a curtain so that the mouse is alone in the dark box. Kristian assures us that the mouse is okay and that he can see what the mouse is doing through an infra-red camera.

“This room and the equipment is so new, we are still experiencing some issues with the tech,” says Marianne. But Christian fixes the problem and suddenly we see something on the computer screen that we have never seen before. It is a look into the mouse’s brain while it runs on the treadmill. This means that the researchers can watch the nerve cells as the mouse looks at vertical and horizontal lines, and detect where the brain activity occurs.

 

Research role models

The students from Ullern know they are lucky to see how cutting-edge neuroscience is done in real life. Marianne and her colleagues are far from nobodies in the research world. Bente Prestegård from Oslo Cancer Cluster and Monica Jenstad, the biology teacher at Ullern who coordinates the work placements, made sure to tell the students beforehand.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level. They can see that the people behind the research are nice and just like any normal people. When seeing good role models, it is easier to picture a future in research for oneself,” says Monica.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level.”

Monica and Marianne have known each other since they were master students together at the University of Tromsø almost twenty years ago.

“I know Marianne very well, both privately and professionally. She is passionate about her research and about dissemination and recruitment. She also works hard to create a positive environment for her research group. Therefore, it was natural to ask Marianne to receive the students and it wasn’t difficult to get her to agree,” says Monica.

Back in the first operating room, Dejana and Malin are still operating on the rats. They will spend the entire day doing this. It takes time when the equipment needs to be found and sterilised, the rats need to be sedated and then operated on as precisely as possibly. It is past noon and time for lunch for Marianne, Kristian and the Ullern students on work placement.

Before I leave them outside Niels Henrik Abels Hus at the Oslo University Campus, I take a picture to remember the extra-ordinary work placement. And not least: to store a picture of the memory in my own brain.

 

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

 

Sign up to OCC newsletter

Introducing programming to the curriculum

Programming is not only for computer hackers, it can also help teachers to engage their students in science subjects and inspire start ups to discover new cancer treatments.

 

Almost 60 teachers working in upper secondary schools in Oslo visited Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School one evening in the end of March. The topic for the event was programming and how to introduce programming to the science subjects in school.

“The government has decided that programming should be implemented in schools, but in that case the teachers first have to know how to program, how to teach programming and, not least, how to make use of programming in a relevant way in their own subjects.”

This was how Cathrine Wahlström Tellefsen opened her lecture. She is the Head of Profag at the University of Oslo, a competence centre for teaching science and technology subjects. For nearly one hour, she talked to the almost 60 teachers who teach Biology, Mathematics, Chemistry, Technology, Science Research Theory and Physics about how to use programming in their teaching.

 

What is KUR? KUR is a collaborative project between Oslo Cancer Cluster, Ullern Upper Secondary School and other schools in Oslo and Akershus. It aims to develop the skills and competence of science teachers. Every six months, KUR arranges a meeting where current topics are discussed.

 

Programming and coding

“Don’t forget that programming is much more than just coding. Computers are changing the rules of the game and we have gained a much larger mathematical toolbox, which gives us the opportunity to analyse large data sets,” Tellefsen explained.

Only a couple of years ago, she wasn’t very interested in programming herself, but after pressures from higher up in her organisation, she gave it a shot. She has since then experienced how programming can be used in her own subject.

“I have been a Physics teacher for many years in an upper secondary school in Akershus, so I know how it is,” she said to calm the audience a little. Her excitement over the opportunities programming provides seemed to rub off on some of the people in the room.

“In biology, for example, programming can be used to teach animal population growth. The students understand more of the logic behind the use of mathematical formulas and how an increase in the carrying capacity of a biological species can change the size of its population dramatically. My experience is that the students start playing around with the numbers really quickly and get a better understanding of the relationships,” said Tellefsen.

When it was time for a little break, many teachers were eager to try out the calculations and programming themselves.

 

Artificial intelligence in cancer treatments

Before the teachers tried programming, Marius Eidsaa from the start up OncoImmunity (a member of Oslo Cancer Cluster) gave a talk. He is a former physicist and uses algorithms, programming and artificial intelligence every day in his work.

“OncoImmunity has developed a method that can find new antigens that other companies can use to develop cancer vaccines,” said Eidsaa.

He quickly explained the principals of immunotherapy, a cancer treatment that activates the patient’s own immune system to recognise and kill cancer cells, which had previously remained hidden from the immune system. The neoantigens play a central role in this process.

“Our product is a computer software program called Immuneprofiler. We use patient data and artificial intelligence in order to get a ranking of the antigens that may be relevant for development of personalised cancer vaccines to the individual patient,” said Eidsaa.

Today, OncoImmunity has almost 20 employees of 10 different nationalities and have become CE-marked as the first company in the world in their field. (You can read more about OncoImmunity in this article that we published on 18 December 2018.)

The introductory talk by Eidsaa about using programming in his start up peaked the audience’s interest and the dedicated teachers eagerly asked many questions.

 

Programming in practice

After a short coffee break, the teachers were ready to try programming themselves. I tried programming in Biology, a session that was led by Monica, a teacher at Ullern Upper Secondary School. She is continuing her education in programming now and it turns out she has become very driven.

“Now you will program protein synthesis,” said Monica. We started brainstorming together about what we needed to find out, which parameters we could use in the formula to get the software Python to find proteins for us.

Since my knowledge in biology is a little rusty, it was a slow process. But when Monica showed us the correct solution, it was surprisingly logical and simple. The key is to stay focused and remember to have a cheat sheet right next to you in case you forget something.

 

Sign up to OCC newsletter

Transporting patients

Student Jørgen Amdim got to experience life as an orderly on his one-week placement at the Norwegian Radium Hospital.

 

Transporting patients in Norway’s biggest cancer hospital is strenuous both physically and psychologically. “But it’s really good,” said Jørgen Amdim, who is studying the program Healthcare, childhood and youth development at Ullern Upper Secondary School. His one-week placement was at the Transport Section at the Norwegian Radium Hospital. The work experience certainly gave him a taste for more.

Jørgen has previously worked in a nursing home, but he found the work a little tedious. He enjoyed being an orderly though and asked the school if there were any available placements.

An orderly is an attendant in a hospital who is responsible for, among other things, transporting patients, medical equipment and other essential materials. Jørgen spent one week as an orderly at the Radium Hospital and he loved it. He enjoyed it so much that he wants to work there again during the summer of 2019.

Knut Arve Kristiansen, the Head of the Transport Section, has worked at the Radium Hospital for 30 years and praised Jørgen:

“He was a perfect addition to our team, and we are very happy with him.”

 

80 km per week

Jørgen enjoys manual labour, which is great if you want to become an orderly. Wheeling around heavy medical equipment or patients in beds and wheel chairs is hard work. Knut Arve explained:

”As orderlies, we’re constantly on the go, and we could end up walking around 80 kilometres on hard floors during a week of work.

“It can be strenuous for the body, so we have to regularly do strength exercises to keep fit,” Knut Arve continued.

Knut Arve only had positive things to say about Jørgen and he hopes that Jørgen will want to return to the Transport Section for a summer job as an orderly.

“Jørgen is a social person and very well liked. This is important for patients when they are transported between examinations and the rooms they are staying in,” said Knut Arve.

Jørgen praises the work environment and especially the warm welcome he received from the other staff.

Jørgen has constantly been accompanied by a colleague from the section during his stay, because he is not allowed to do much on his own when on a placement. If he returns for a summer job, things will be different. Then he will have to work more independently and take responsibility if an emergency should occur while he is transporting a patient.

The orderlies are also responsible for transporting food and medication. To newcomers, the Radium Hospital can appear to be a huge labyrinth, especially outside the wards. The hospital is also currently being renovated, because a new hospital is being built. A sense of direction is therefore essential for anyone finding their way through the building.

 

A future in health

Jørgen does not necessarily want to become an orderly, but sees himself working in healthcare:

“I would really like to work in an emergency room – receiving ill and injured people at the hospital when they arrive in an ambulance. But I think working as an orderly is very exciting too, so I don’t want to exclude it as an option.”

Knut Arve says that a trade certificate is required to work as an orderly and that they currently offer placements for several apprentices in the section. Students need to study Healthcare, childhood and youth development during upper secondary school and then finish a two-year apprenticeship to obtain their trade certificate as an orderly.

”Workdays here are very varied and you meet many different people. It is really fun to talk to people and no two days are the same. I have really enjoyed it.” said Jørgen.

 

Attracting and developing the life science talents of the future is an essential goal for Oslo Cancer Cluster. One way to do that is to take students outside the traditional classroom setting and invite them to work placements and educational lectures. These collaborations between industry and academia give the students a unique insight into the specialist skills needed to become tomorrow’s researchers and entrepreneurs.

  • Find out more about Oslo Cancer Cluster’s school collaboration with Ullern Upper Secondary School.

 

Sign up to OCC newsletter

 

Surgery, squash and anaesthesia

Hannah (18) wants to become a doctor. After two days job shadowing doctors and nurses at the Norwegian Radium Hospital, she is even more certain that this is what she wants to do.

If your dream is to become a doctor, it may be a good idea to gain some insight into what the job actually involves before embarking on a long education. But job shadowing a doctor is usually only a possibility if you’re already a medical student.

Truls Ryder is a senior consultant and surgeon at the Norwegian Radium Hospital. He decided to do something about this, and over three days, one theme day that you can read more about here and two days of job shadowing, 18 pupils had the opportunity to experience surgery, morning staff meetings and patient consultations with the best cancer specialists and nurses in Norway.

Hannah Fiksdal is one of these pupils. And I, Elisabeth the journalist, shadowed her on the first of her two days at the Norwegian Radium Hospital. It was a day that neither of us will forget. A day that left Hannah with an even stronger desire to become a doctor.

‘I am incredibly grateful for the chance to shadow two different doctors, and to Truls Ryder for taking the initiative to allow pupils from Ullern to come to the Norwegian Radium Hospital. It gives us some idea of what may interests us before we apply for higher education in the spring. Having had a taste of two different aspects of medicine, I think that surgery and anaesthesiology were probably the things that I found most exciting.’

Hannah Fiksdal.

Hannah Fiksdal starts the day early at the hospital. Photo. Elisabeth Kirkeng Andersen

Tuesday 7 November

07:15 – the Norwegian Radium Hospital, basement level 2 – the corridor outside room AU 230
Sixteen excited pupils, 14 from the natural science and mathematics programme who will be shadowing doctors and two from the healthcare programme who will be shadowing nurses, are standing in a corridor two floors below the main entrance to the Norwegian Radium Hospital dressed in white hospital clothes.

Truls Ryder, senior consultant and prime mover behind the job shadowing scheme, is also here. He quickly reads out where each pupil will be spending the day, and sets of at a brisk pace with everyone in tow.

This is an indication of what is to come.

We go five floors up and then a couple of floors down via the back stairs. On the way, pupils peel off from the group to join other senior consultants and professors who they will be job shadowing today.

Hannah and Tristan are handed over to the anaesthetists at the anaesthesiology department. The department has nine senior consultants, one professor working 50% of a full-time position, and three specialist registrars.

07:34
The morning staff meeting has already started when Hannah and Tristan arrive. Eight doctors and nurses go through the list of patients who will need anaesthesia or pain relief today. Some will undergo surgery in the hospital’s central unit, and some require their services in other parts of the hospital, such as the radiotherapy department.

It is difficult to understand the discussions and information exchanged between the doctors and nurses. The jargon is technical, professional and precise. I wonder how much Hannah and Tristan understand? But it is clear that we have a full day ahead, and that many of the patients are seriously ill with cancer. Some are young, and some patients’ cancer has returned after treatment. Despite the difficult subject, the tone of the meeting is upbeat and friendly. It will remain so for the rest of the day.

08:00
Tristan and Hannah meet their mentors for the day. Tristan will join Senior Consultant Hege for a complicated operation that may take more than ten hours. The patient has a form of cancer that means that the surgeons have to go into the skeleton, among other things.

Hannah will be joining Senior Consultant Anne. Anne has several operations on her schedule today, and Hannah and I will be allowed to tag along and see how she works. Anne’s first patient is having an epidural and then a general anaesthetic. This is also a complicated operation.

Anne and Hege both tell us to be prepared that what we experience may make a strong impression on us and that it is natural to feel unwell. They both share stories about themselves and about medical students who have fainted both during and after visits to the operating theatre.

‘Let us know if you fell unwell,’ is their mantra, ‘and we will help you.’ I think back to the countless shifts I worked at nursing homes during my student days, and hope that they have prepared me for this. But what about young people of 18 and 19 who want to go on to work here?

08:07
Anne gives us green scrubs and a purple cap. We change in her office while she explains that her job can be compared to a pilot flying a plane. There is a lot to do when the operation starts until the patient is under anaesthesia, and then there is a calmer period of observation of the patient, often done by her colleagues, and then she goes back to full focus when the patient wakes up.

We get changed quickly.

8:10
Surgery starts early at the Norwegian Radium Hospital, and the patient arrives at the operating theatre at the same time as we do. Anne explains who Hannah and I are and why we are here. In addition to the patient, there are already five people working here.

Anne jokes and talks to the patient, who she has already met several times before. She explains that she will first be administering a local anaesthetic to the back before putting in an epidural, a form of pain relief given as an injection in the back. After that, a cannula will be inserted into a vein in the patient’s lower arm. When the patient is completely asleep, Anne will place a catheter in the neck that will be used to administer anaesthetics, pain relief, salts and anything else the body may need during an operation.

Anne involves Hannah in the work and explains what she is doing while she works, and she also explains to the patient.

‘It was also really nice to see how caring the doctors and nurses were and how they reassured the patients before surgery. They were very good at creating a pleasant atmosphere to make the patients feel safe despite the seriousness of the situation.’

Hannah Fiksdal.

08:41
Operating theatre 4 is a big, light room, and one of the long walls has big windows with a view of Mærradalsbekken stream and the surrounding forest. The river and the walking path meander side by side. But today, we can hardly see any of this through the darkness and fog.

Anne keeps an eye on the pulse and heart monitor that the patient is connected to, while the theatre nurse is preparing the instruments that the surgeons might need during the operation.

The patient is about to be put under full anaesthesia. Anne and her colleagues place a cannula in an artery in the patient’s lower arm/hand and a catheter in a vein in the neck. Anne is calm and talks to both the patient and Hannah. She explains to the patient that she will soon be asleep. She explains to Hannah what she is doing, and how you can tell the difference between a vein, which carries blood back to the heart: ‘It is darker in colour and pumps slower’ and an artery, which carries blood from the heart: ‘It is light in colour, full of oxygen, and has more force. If I had made a hole in an artery, the blood would have squirted out.’

Despite the number of people working in the operating theatre, the atmosphere is calm and pleasant.

Hannah pays close attention to Anne and asks questions while she is working. Anne is obviously impressed with the pupil: ‘Hannah, you are a tough cookie.’

09:10
The patient has been anaesthetised and is ready for surgery. At this stage, Anne and her colleagues’ responsibility is to ensure that the patient is okay during surgery.

09:40
The patient is in good hands in the operating theatre, so Anne goes to the recovery unit where the patients are taken to recover from the effects of surgery. Patients are closely monitored here. Many complications can arise following surgery, such as bleeding, breathing difficulties, a fall in blood pressure, pain and nausea.

Anne will set up a pain pump for the patient. This is a pump with morphine that Anne programs so that the patient can regulate how much pain relief she needs and wants in the days following the operation. We are allowed to use the staff’s break room while she is programming it. ‘Drink squash with sugar,’ she advises. We do as we are told, and talk a bit about what we have seen and experienced so far. Hannah is pleasantly surprised that she has been allowed into the operating theatre already, and at how open and welcoming everyone is.

‘There was some information about anaesthesia at the theme day yesterday, so I understand what is going on,’ says Hannah, and talks more about her wish to become a doctor.

Anne returns and takes the time to talk to Hannah about medical school and her many years working as an anaesthetist at Haukeland University Hospital. She took up her position at the Norwegian Radium Hospital a month ago, and there is still much that is unfamiliar.

10:01
We return to the operating theatre. There are suddenly a lot of people here, and several surgeons with different areas of specialisation discuss the surgery they are about to perform. It is a complex operation that requires cooperation.

After conferring for a while, the surgeons make a plan. Several of the Ullern pupils on job shadowing come by together with a gastrointestinal surgeon. One of the surgeons takes the time to explain the plan to Hannah and the others.

10:20
A theatre nurse goes through a checklist with the physician, surgeon and anaesthetist Anne. Everything is in order, and the operation can begin. Anne uses all her senses to check that the patient is still doing well.

Two surgeons cooperate on the operation. Hannah stands watching behind them. They talk about this and that while they are working, including the musical Book of Mormon. The actual operation is expected to take five hours. After working and discussing amongst themselves for a while, they ask for another surgeon to be called. They need what is called a ‘second opinion’, or another surgeon’s assessment.

There are suddenly a lot of people in the operating theatre, and several surgeons with different areas of specialisation discussing the case. Truls comes in with a couple of pupils who are shadowing him. Truls confers with his colleagues, and one of the surgeons explains that they are uncertain about the best way to proceed. When the surgeons opened the patient up, they found that the assumptions they had made from the outside were not correct. They have to rethink and make a new plan for the operation.

Anne lets us know that this is very unusual. There are rarely this many surgeons involved in an operation, and they do not often spend this much time discussing what to do. She suggests that we take a break and get something to eat. She has to work, though, both with more of today’s patients and planning for tomorrow, but she thinks that we should eat something.

‘Another thing that surprised me was the doctors’ willingness to show and tell me what they were doing and why. During the first day in particular I learnt a lot that I hope will be useful in my future studies. It was also very clear during the operations that good cooperation is incredibly important in order to achieve the best possible outcome for the patients. Everything from how the senior consultants’ discussed to find the best way to proceed during the first operation to how the two surgeons cooperated without needing to communicate much during the second one.’

Hannah Fiksdal.

11:07 Break room
Since we have green scrubs on, we have crispbread with cheese in one of the break rooms. Otherwise, we would have had to change, leave to eat and then change back afterwards. We also have more squash. With sugar. More pupils come in for a welcome break. Four intense hours have flown by. Two pupils have fainted and woken up again.

Ander Bayer from Oslo University Hospital’s communications department also joins us. He made this video about the job shadowing.

 

11:36 Operating theatre 2
Anne comes to get us. Hannah is going to go with her to another operation. Anne is to put another patient under anaesthesia. Again, Anne explains to the patient and theatre nurses who we are. This patient is also having an epidural in the back, and again, Anne alternates between speaking softly and reassuringly and explaining what she is doing to the patient and Hannah. Fourteen minutes after we entered the operating theatre, the patient is under. Two nurse anaesthetists help Anne by monitoring the patient. The theatre nurses wash the abdomen where the surgeons will open up the patient to remove tumours.

12:15 Operating theatre 4
Anne is needed in operating theatre 4 again, where three surgeons are operating on the first patient. They have now decided what to do.

12:23 Break
We get to take another break and have some squash with sugar, while Anne is preparing a pain pump for the second patient.

12:32
The second patient’s operation is under way. Two surgeons are standing face to face, working together. Anne gets a stool so that Hannah can stand by the patient’s head and watch the surgeons work inside the patient’s abdomen. They have made an incision that is held open by a large tool. There is a smell when the surgeon uses an electrosurgical knife to cut tissue and burn small blood vessels. The cancer they are removing is located around the vein and artery, the blood vessels running to and from the heart and legs. The surgeons show Hannah where they have to be careful. The cancer is removed, and they quickly suture the different layers of tissue before stapling the skin. The theatre nurses perform a routine equipment count. The operation is completed in 40 minutes.

The day in the operating theatre was at least as exciting as I imagined! I had not expected that they would allow us to get so close to the patients and really get a proper insight into what happens during an operation and also how the patients are anaesthetised.’

Hannah Fiksdal.

13:35
Anne returns to make sure that both the patient and Hannah are okay. Anne and her colleagues from the anaesthesiology department wake the patient up. The important thing now is for the patient to start breathing again. Everything goes as it should.

13:40
We accompany the patient to the recovery unit, where the patient will remain for a few hours. Anne’s work with this patient is now finished. We go back to her office to change out of the green sterile scrubs. Anne tells Hannah that she will probably doze off early after such a long and intense day. Anne’s shift will last until half past three, when other anaesthetists will take over for the evening shift. In the hall, Hannah thanks Anne for everything she has taught her and for taking care of her during the day.

14:00
As we leave the Norwegian Radium Hospital through the main entrance, we wonder how the first patient whose surgery we saw in the operating theatre is doing. And Hannah says that she is looking forward to another day of job shadowing tomorrow.

Epilogue
The evaluation results for the theme day and job shadowing were excellent. The pupils and teachers were highly satisfied, and it has already been decided that this will be made an annual event for pupils at Ullern upper secondary school who are considering a career in medicine.

‘Finally, I would like to say that it was very inspiring to see how committed Anne and Anna (Anna Winge-Main, who was Hannah’s mentor on the second day of job shadowing) was to their work and how much they loved their job. It was very clear that they are really dedicated to helping their patients. As Anne said, medical school can be hard and difficult, but once you start working as a doctor, nobody regrets their choice.’

Hannah Fiksdal.

READ MORE:

Having Chemistry with Chemistry

Interested pupils at Ullern Upper Secondary School arrive at laboratory 117 to learn alongside Dr. Bora Sieng, a chemist in Arctic Pharma. Dr. Sieng advocates for the importance of chemistry and encourages pupils to pursue a career in the exciting field of chemistry.

 

At nine o’clock in the morning, three boys eagerly gather outside laboratory room 117. They’re waiting for an exciting opportunity offered by the collaboration between Ullern Upper Secondary and Oslo Cancer Cluster. This opportunity provides pupils the chance to see how chemistry is used in a real-life setting (a biotech company). This allows pupils to apply what they have learned in the classroom and in their textbooks to real-life scientific problems, such as developing new therapies for diseases.

The door opens and Dr. Bora Sieng greets the students with a friendly smile and handshakes. Dr. Sieng, who has a PhD in organic chemistry and is project leader in Arctic Pharma, welcomes them in. Arctic Pharma is a small start-up company developing innovative anti-cancer drugs.

Reaction Action
When entering the lab, we can feel the excitement between the pupils, they are here to learn. Dr. Sieng asks the boys what level of chemistry the pupils have taken. They nervously, but excitedly respond that they haven’t taken advanced levels, but know basic organic chemistry. Thus, they’re put to work after going through some textbook examples and introductory concepts. It’s time for some chemistry cooking!

A Collaboration is Formed
Arctic Pharma relocated their chemistry laboratory temporarily to Ullern in April. Dr. Sieng has been using the laboratory since then. He offers some insight into the new collaboration between Arctic Pharma and Ullern Upper Secondary School.

– For the past few months, I have had the opportunity to carry out my work using the facilities at Ullern through Arctic Pharma’s Collaboration with the school. I feel the school collaboration is a win-win for Arctic Pharma and the pupils at Ullern. Arctic Pharma is committed to introduce pupils to organic chemistry from a company’s perspective. This provides the students with the chance to get a feel of what it is like to work in a biotech company and to see how their education can be applied.

Chemistry is Exciting
When asked why exactly the pupils should learn chemistry, Dr. Sieng responds with this:

– Organic chemistry is fascinating! It can have many applications such as drug design and development, cosmetics, material development in, for example, rubber, plastics, detergents and paints as well as production of chemicals used in agriculture, to name a few examples.

Next Generation
At Arctic Pharma, Dr. Sieng works in a team of scientists that specialize in different fields important for drug design and development. As a medicinal organic chemist, Dr. Sieng is passionate about his work, and hopes to inspire the new generation of chemists.

–  To keep Norway a world innovator, the field of chemistry is important and we especially need to nourish the next generation of chemists and scientists, hence this collaboration is also important for our country.

Essentially, we need to ensure a future for Norway that will continue to thrive, construct and further the research that will help us continue down the path of innovative discovery. Such a future can only be secured if we continue to unlock the potential that chemistry offers us; a future waiting to be unlocked by the next generation.